JOURNAL

OF THE AMERICAN CHEMICAL SOCIETY

Registered in U.S. Patent Office. © Copyright, 1976, by the American Chemical Society

VOLUME 98, NUMBER 18 SEPTEMBER 1, 1976

Stabilization of Planar Tetracoordinate Carbon^{1a}

John B. Collins,^{1b,c} James D. Dill,^{1b} Eluvathingal D. Jemmis,^{1b,c} Yitzhak Apeloig,^{1b} Paul von R. Schleyer,*^{1b,c} Rolf Seeger,^{1d} and John A. Pople^{1d}

Contribution from the Departments of Chemistry, Princeton University, Princeton, New Jersey 08540, Institut für Organische Chemie, Universität Erlangen-Nürnberg, D-8520 Erlangen, Germany, and Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. Received August 26, 1975

Abstract: The energies of planar vs. tetrahedral geometries of tetracoordinate organic molecules have been surveyed by ab initio molecular orbital calculations. Because of their π acceptor and σ donor character, electropositive substituents, especially lithium, are particularly effective in stabilizing the planar arrangements selectively. Multiple substitution by such metals and by three-membered rings provides further stabilization, and 1,1-dilithiocyclopropane (XVII) and 3,3-dilithiocyclopropene (XVIII), inter alia, are actually calculated (RHF/STO-3G theory) to be more stable planar than tetrahedral.

van't Hoff and LeBel's proposal that tetracoordinate carbon prefers tetrahedral geometry² celebrated its centenary in 1974.³ No fundamental exception, e.g., an organic compound in which all four substituents lie in a plane, is known. It is not difficult to understand why this should be so. Singlet planar methane is sp² hybridized with a lone pair of electrons in the remaining p orbital (I).⁴ Consequently, only six electrons instead of eight are involved in bonding. Numerous theoretical calculations⁵ at different levels of sophistication have been applied to this problem and are summarized in Table I. The best available ab initio quantum mechanical calculations indicate D_{4h} singlet planar methane should be about 150 kcal/ mol less stable than the tetrahedral form.⁶ Since the bond dissociation energy of the C-H bond is only 104 kcal/mol⁷ D_{4h} planar methane would not be expected to exist under any circumstances. Figure 1 shows the molecular orbitals of planar methane.40

Nevertheless, chemists have long been fascinated with the possibility that compounds might be found in which a carbon either is planar or can undergo planar inversion with a sufficiently low barrier to permit experimental detection. The possibility that the stereomutation of cyclopropane might proceed via the twisting of one of the methylene groups through the carbon plane was considered^{8a} but has been rejected.^{8b} MINDO/2 calculations suggest that the phenonium ion (II) may have a low barrier to planar inversion, but this process has not been detected experimentally.⁹ *trans*-Fenestrane (III),^{6a,10} [2.2.2.2]paddlane (IV),¹¹ and aromatic molecules such as V^{4b} have been suggested as possibilities having planar carbons, but none of these have yet been synthesized.

III and IV represent the traditional "brute-force" approach to problems of this type; such systems will be highly strained if not prohibitively so. Instead of contriving against nature, it might be better to find ways preferentially to stabilize planar over tetrahedral geometries.

Previous investigations (Table II),^{4,12} particularly that of Hoffmann, Alder, and Wilcox,4b have revealed how this might be done. For example, extended Hückel calculations (EHT) showed that the energy required to distort cyclopentadiene would be much reduced by the aromatic 6 π -electron character of the planar form (VI). σ -Donating electropositive substituents such as -SiH₃, -BH₂, and lithium should be effective in reducing the planar-tetrahedral energy difference,4b Since the "natural" angle in planar carbon derivatives is 90° instead of 109.5°, the introduction of small rings also should help to stabilize the planar forms since both angle strain and repulsive steric interactions between substituents would be reduced.⁹ This effect, along with π delocalization, contributes to the very low distortion energy (19^{12a} or 22^{12b} kcal/mol) calculated by MINDO/2 for the planar phenonium ion (II). Another approach often previously proposed⁴ is simply to remove two electrons thereby giving a six valence electron species. Unfortunately, CH_4^{2+} , although calculated to prefer planarity strongly, is unstable toward dissociation into CH3⁺ and $H^{+,13}$

Planar tetracoordinate carbon is a difficult problem to attack

Figure 1. Valence molecular orbitals of planar methane (D_{4h}) arranged in order of increasing energy. The lower four are occupied in the singlet.

experimentally but it is easy computationally. Our approach has been to explore systematically by ab initio calculations the planar-tetrahedral energy difference in a variety of molecules. This has culminated in the discovery of relatively simple derivatives of methane that are indicated to prefer planar over tetrahedral geometries.

Computational Method

Several levels of sophistication were employed to determine the planar-tetrahedral energy differences. Most of the work was carried out using Hartree-Fock theory. For singlet states the spin-restricted form (RHF)^{15a} involving doubly occupied molecular orbitals was used but triplet states were handled by the spin-unrestricted version.^{15b} Initially the minimal STO-3G basis set14 was used in conjunction with standard geometries.16 Geometry optimization at the RHF/STO-3G level (or UHF/STO-3G for triplets) was then carried out, according to procedures described previously,17 on the smaller molecules and on those which were indicated to have small planar distortion energies. Calculated structures are given in Table III. Single calculations at the split valence RHF/4-31G or UHF/4-31G levels¹⁸ were then performed on the STO-3G minimized geometries. Total energies at these three levels are reported in Table IV. As can be seen from Tables V-VII, both geometry optimization and extension of the basis set uniformly reduce the energy differences. This arises since the "standard" models are appropriate for tetrahedral geometries but less so for planar structures largely because of significant π bonding or π antibonding between the substituent and the planar carbon atom; geometry optimization thus tends to lower the energy of the planar forms to a greater extent than the tetrahedral, Furthermore, since the planar carbon atoms have both σ and π bonds, they should benefit more from the increased flexibility

Table I. Calculated Energy Difference for Planar (D_{4h}) vs. Tetrahedral (T_d) Singlet Methane Using Several Molecular Orbital Methods (kcal/mol)

ΔE	Method or basis set	Ref
127	EHT	4b
187	CNDO	4b
95	PNDO	5b
120	MINDO/3	а
250	Minimal STO	5a, d
240	RHF/STO-3G	5c, 6b
168	RHF/4-31G	5c, 6b
165	RHF/6-31G	6b
171	RHF/6-31G*	6b, <i>b</i>
166	RHF/6-31G**	6b, <i>b</i>
160	Double 5	6a
	with polarization	
157	RMP2/6-31G**	b
150	RHF/6-31G** with CI	6b

^aE. D. Jemmis, unpublished. ^b This work.

Table II. Semiempirical Calculations of Planar-Tetrahedral Energy Differences (kcal/mol)

Molecule	Method	ΔE
\triangleright	EHT	97 <i>a</i>
\square	EHT	97 <i>b</i>
C(CN) ₄	EHT	79b
$(\mathbf{E} \times_{\mathbf{H}}^{\mathbf{H}} $	EHT	67 <i>b</i>
$C(SiH_3)_4$	EHT	67 ^b
$C(BH_2)_4$	EHT	422
$\overline{\odot}$	EHT	25b
$\langle \odot \rangle \triangleleft$	MINDO/2	19¢
		22đ

^a Reference 9. ^b Reference 4b. ^c Reference 12a. ^d Reference 12b.

of the split valence basis set than do the tetrahedral geometries.

To confirm the reliability of these results, more rigorous studies were made in two cases. Methane has been treated most extensively. Reoptimization of the structure using the RHF/6-31G*¹⁹ level (which contains d-type polarization functions on carbon) yields a value for the barrier to planarity (171 kcal/mol) in close agreement with the RHF/4-31G result (168 kcal/mol) and a closely similar bond length.²⁰ Further extension of the basis set to include p functions on hydrogen (RHF/6-31G**) yields a value of 166 kcal/mol for the inversion barrier. Similarly a single calculation was performed at the RHF/6-31G* level for CH_2Li_2 at the STO-3G geometry.²⁰ The RHF/6-31G* barrier to inversion of 8 kcal/mol differs by only 2 kcal from the RHF/4-31G value, 10 kcal. A final check of the calculated structures was made by carrying out a partial geometry optimization of methyllithium (both C_{3v} and C_{2v}) using the extended RHF/4-31G level. This was done to ensure that the minimal STO-3G basis does not overestimate the role of the lithium 2p functions. Reoptimization of the C_{3v} structure resulted in an improvement in the RHF/4-31G total energy (-45.959 86 au) of only 0.2 kcal/ mol while the C-Li distance shortened 0.02 Å (2.008 to 1.990 Å) and the \angle HCLi angle changed 1.2° (112.6 to 111.4°). Reoptimization of the planar form gave a modestly larger lowering of 4.0 kcal/mol in the total energy $(-46.898 \ 30 \ au)$, RHF/4-31G) but a larger change in r(C-Li) (from 1.727 to 1.899 Å); ∠HCLi widens only slightly from 64.5 to 64.8°.

Similarly, RHF/4-31G reoptimization of tetrahedral CH_2Li_2 resulted in an improvement in the total energy (-53.77521 au) of only 0.4 kcal/mol and changes in the C-Li distance (1.924 to 1.966 Å) and LiCLi angle (119.8 to 115.0°) of 0.042 Å and 4.8°, respectively. Reoptimization of the planar form gave an energy decrease of 2.7 kcal/mol (-53.76231 au, RHF/4-31G), and an increase in the bond length (1.744 to 1.838 Å) of 0.094 Å and in the LiCLi angle (97.8 to 98.9°) of 1.1°. Based on these results, it seems that the 4-31G values listed in Tables V-VII are upper limits lying only a few kilocalories above the Hartree-Fock result.

The effect of electron correlation on the methane inversion barrier also was examined using restricted Møller-Plesset second-order perturbation theory²¹ applied to the 6-31G** wave function (this is designated RMP2/6-31G**). This method showed that inclusion of correlation energy led to a further lowering in the planar inversion barrier by 9 kcal/mol, from 166 to 157 kcal/mol (Table I).

An additional question is whether the electronic configuration depicted in I is truly the ground state. To test this the pair of electrons in the p orbital of planar methane was removed and placed in the electron deficient σ system (b_{1g} orbital). This results in an increase in the energy by 88 kcal (RHF/6-31G*) and abnormally long bond lengths of 1.237 Å. This result might not have been expected. Isoelectronic BH₄⁻⁻ and valence isoelectronic SiH₄ prefer a vacant p orbital in their singlet planar ground states.²² The highest occupied b_{1g} orbital is then of d symmetry. The problem of whether the ground states are singlet or triplet is considered below.

Results and Discussion

Three effects should lower the planar distortion energy. Planar tetracoordinate carbon should be stabilized preferentially (1) by delocalizing the lone pair by π conjugation,^{4b} (2) by providing more electron density to carbon by σ donation,^{4b} and (3) by enforced reduction of the angle around the planar carbon atom by means of small rings.

Monosubstituted Methanes

Consider first the effect of a single substituent (Table V). Because of lone pair repulsion and high electronegativity, fluorine raises the planar-tetrahedral energy difference. On the other hand, the electropositive substituents, BH₂, BeH, and especially Li, lower the energy difference dramatically due to the simultaneous operation of σ -donating and π -accepting effects. Interestingly, the cyano group, a good π acceptor but also a good σ acceptor, is not particularly favorable.

Comparisons of all planar (e.g., VIIa) and perpendicular (e.g., VIIb) forms allow an assessment of the relative impor-

tance of σ vs. π effects with substituents such as BH₂, CH₂⁺, and NH₂. Delocalization of the carbon lone pair into the boron p orbital is precluded in perpendicular CH₃BH₂ (VIIb) resulting in an increase in the energy of the planar form by 26 kcal/mol (RHF/4-31G). This is a measure of the π effect. If BH₂ is replaced by isoelectronic CH₂⁺ the effect is even more dramatic, 115 kcal/mol (RHF/STO-3G). In the perpendicular forms (e.g., VIIb) only the σ effect should be operative (along with a modest amount of hyperconjugation), and the reduction of the planar-tetrahedral difference is 36 kcal/mol for a BH₂ substituent. Evidently the σ and π effects are of comparable significance in the influence of BH₂ on the planar-tetrahedral energy difference. Similarly, rotation of NH₂ in CH₃NH₂ (VIIIa,b) can eliminate the unfavorable C_{π} -N (lone pair) effect thereby lowering the planar distortion energy by 16 kcal/mol (RHF/4-31G).

The calculated geometries (Table III) provide further insight into the electronic structure of the planar arrangements. Electropositive substituents which stabilize the planar form appear to be bridging a planar carbanion. Thus, in CH₃Li (IX) \angle H_aCH_b is 115°, nearly the ideal 120° value. Destabilizing ligands such as fluorine (X) produce an opposite distortion

 $(\angle H_aCH_b \text{ is } 63.3^\circ \text{ in } X)$; in these cases, H_b assumes the role of bridging ligand. Overlap populations indicate significant bonding between Li and H_a in IX and between H_a and H_b in X.

Polysubstituted Methanes

If one substituent lowers the distortion energy substantially, then two or more such substituents should be better. Although one does not normally think of disubstituted methanes as having cis and trans forms, this, of course, is possible if planar structures are adopted.²³ As illustrated in Table VI, if the substituents in question are metals, the cis planar isomers appear to be about 30 kcal/mol more stable than the trans. The electronic structure of *trans*-CH₂Li₂, with two π electrons in a linear three-center orbital (XI), is reminiscent of the allyl cation. The cis form, XII, is even better; the two π electrons

are delocalized in a cyclic arrangement, isoconjugate with the cyclopropenium ion (XIII). XII is "homoaromatic" in the sense that a π bond but not a σ bond exists between the two lithium atoms (cf. Figure 2). This is revealed by the Li…Li Mulliken overlap populations which are repulsive (-0.12) for the σ electrons, but bonding (+0.18) for the π . The 97.7° Li-C-Li bond angle in XII also indicates a balance between the attractive π and the repulsive σ Li…Li effects. The C-Li bond lengths in CH₂Li₂ decrease going from the tetrahedral² (1.924 Å) to the trans planar (1.807 Å) to the cis planar (1.744 Å) arrangements.

The third lithium atom in CHLi₃ produces a further, but modest, lowering of the tetrahedral-planar energy difference. The RHF/STO-3G minimized structure of the planar form reveals an even larger widening of the LiCLi angle to 101.7°. Because of geometric constraints, simultaneous angle enlargement of all LiCLi angles from 90° is impossible in planar CLi₄. Evidently steric (repulsive σ) effects dominate whatever further favorable influences are produced by substitution of the fourth lithium atom, and the planar-tetrahedral energy

Schleyer et al. / Stabilization of Planar Tetracoordinate Carbon

Molecule	Symmetry and structure	Optimized parameter	Molecule	Symmetry and structure	Optimized parameter
CH ₃ F (X)	C _{2v} planar	$r(C-H_a) = 1.124$ $r(C-H_b) = 1.136$ r(C-F) = 1.403	CH ₃ Na	$C_{2\nu}$ planar	r(C-Na) = 2.131 $r(C-H_a) = 1.076$ $r(C-H_b) = 1.053$
CH ₃ OH (OH in plane)	C _s	$\angle H_aCF = 116.7$ r(C-O) = 1.473 r(O-H) = 0.995 $r(C-H_a cis) = 1.118$	CH₃CH₂ ⁺	<i>C</i> ₂ <i>v</i>	$\angle H_aCNa = 62.3$ r(C-C) = 1.318 $r(C-H_a) = 1.114$ $r(C-H_b) = 1.184$
		$r(C-H_{a} \text{ trans}) = 1,107$ $r(C-H_{b}) = 1.136$ $\angle \text{COH} = 101.1$ $\angle \text{OCH}_{a} \text{ cis} = 117.6$	CH ₃ CH ₂ ⁺ (CH ₂ perpen-	<i>C</i> ₂ <i>v</i>	$r(C^+-H) = 1.094$ $\angle H_aCC = 113.4$ $\angle CC^+ H = 121.3$ r(C-C) = 1.420
CH ₃ OH (OH perpen- dicular)	C _s	$\angle OCH_a$ trans = 113.0 $\angle OCH_b$ = 180.0 (ass.) r(C-O) = 1.602 r(O-H) = 0.996	dicular)		$r(C-H_a) = 1.120$ $r(C-H_b) = 1.144$ $r(C^+-H) = 1.128$ $r(C^+CH) = 1.10.6$
		$r(C-H_{a}) = 1.117$ $r(C-H_{b}) = 1.143$ $\angle COH = 84.9$ $\angle OCH_{a} = 86.6$ $\angle OCH_{a} = 180.0 (asc.)$	CH ₂ (BeH) ₂	$C_{2\nu}$ tetrahedral	$\angle HC^+C = 124.0$ r(C-Be) = 1.666 r(C-H) = 1.088 r(Be-H) = 1.290
CH ₃ NH ₂ (VIIIa)	C _s	r(C-N) = 1.513 $r(C-H_a) = 1.104$ $r(C-H_b) = 1.131$	СН, (ВеН),	$C_{\rm av}$ planar	\angle HCH = 107.0 \angle BeCBe = 113.9 \angle CBeH = 180,0 r(C-Be) 1.557
Сн мн (VIIIb)	C	r(N-H) = 1.044 $\angle NCH_a = 112.0$ $\angle HNC = 104.7$ $\angle HNH = 101.7$ r(C-N) = 1.438	2	- 20 F	r(C-H) = 1.097 r(Be-H) = 1.284 $\angle HCH = 105.3$ $\angle BeCBe = 86.4$
	C g	$r(C-H_a \text{ cis}) = 1.135$ $r(C-H_a \text{ trans}) = 1.1135$ r(1.113)	CH ₂ (BeH) ₂	D ₂ h	\angle BeBeH = 140.1 r(C-Be) = 1.580 r(C-H) = 1.286 r(Be-H) = 1.290
		r(N-H) = 1.036 $\angle NCH_a \text{ cis} = 120.1$ $\angle NCH_a \text{ trans} = 116.0$ $\angle HNC = 104.7$	HC(BeH) ₃	C ₃ ,	r(C-Be) = 1.644 r(C-H) = 1.093 $\angle HCBe = 108.7$ r(C-Be) = 1.616
CH3CH3	Cs	\angle HNH = 105,2 r(C-C) = 1.507 $r(C-H_a) = 1.106$ $r(C-H_b) = 1.130$	(Bell)	C _{2V}	$r(C-Be_b) = 1.546$ r(C-H) = 1.102 $\angle HCBe = 89.5$ $r(C-Be_b) = 1.622$
CH_BH_ (VIIa)	Co., planar	$r(C-H) = 1.091^{b}$ $\angle H_{a}CC = 113.9$ $\angle HCC = 112.2^{b}$ $r(C-H_{a}) = 1.073$	$C(BeH)_4$ $C(BeH)_4$ $cis-CH_2Li_2$ (XII)	D_{4h} T_d C_{2v} planar singlet	r(C-Be) = 1.622 r(C-Be) = 1.630 r(C-Li) = 1.744 r(C-H) = 1.110
	0 20 F minut	r(C-H) = 1.070 r(C-B) = 1.511 r(B-H) = 1.157 (H-CB = 77.3)	trans-CH ₂ Li ₂ (XI)	D _{2h} planar singlet	∠HCH = 101.4 ∠LiCLi = 97.7 r(C-Li) = 1.807 r(C-H) = 1.073
CH ₃ BH ₂ (VIIb)	$C_{2\nu}$ planar	$\angle CBH = 120.9$ $r(C-H_a) = 1.156$ $r(C-H_b) = 1.051$	CH ₂ Li ₂	C _{2v} tetrahedral singlet	r(C-H) = 1.091 r(C-Li) = 1.923 ∠HCH = 106.7 ∠LiCLi = 119.8
		r(C-B) = 1.612 r(B-H) = 1.166 $\angle H_aCB = 58.5$ $\angle CBH = 120.4$	$CH_2Li_2 (XXIa)^b$	$C_{2\nu}$ tetrahedral triplet	r(C-H) = 1.091 r(C-Li) = 2.050 \angle HCH = 105.2
СН₃ВеН	C _{2v} 'planar	$r(C-H_{a}) = 1.113$ $r(C-H_{b}) = 1.064$ r(C-B) = 1.543 r(Be-H) = 1.280	cis-CH ₂ Li ₂ (XXIb) ^b	$C_{2\nu}$ planar triplet	\angle LiCLI = 68.5 r(C-H) = 1.098 r(C-Li) = 1.999 \angle HCH = 101.9 \angle LiCLI = 68.9
CH₃Li (IX)	$C_{2\nu}$ planar	LHC Be = 66.29 $r(C-H_a) = 1.090$ $r(C-H_b) = 1.068$ r(C-Li) = 1.727	CHLi ₃	C _{3V}	r(C-H) = 1,107 r(C-Li) = 1.872 $\angle HCLi = 104.8$
CH ₃ CN	C _{3v}	\angle HCLi = 64.49 r(C-H) = 1.088 r(C-C) = 1.489 r(C=N) = 1.154	CHLI3	C _{2V} planar	$r(C-Li_a) = 1.135$ $r(C-Li_a) = 1.846$ $r(C-Li_b) = 1.748$ $\angle LiCH = 78.42$
CH₃CN	$C_{2\nu}$ planar	\angle HCC = 109.93 $r(C-H_a) = 1.119$ $r(C-H_b) = 1.130$ r(C-C) = 1.382 r(C=N) = 1.164	CLi₄ CLi₄ CH₂Na₂	$\begin{array}{c} D_{4h} \\ T_d \\ C_{2\nu} \text{ tetrahedral} \end{array}$	r(C-Li) = 1.905 r(C-Li) = 1.859 r(C-Na) = 2.050 r(C-H) = 1.09 $\angle NaCNa = 123.0$
CH₃Na	C _{3v}	$LH_aCC = 114.68$ r(C-Na) = 2.087 r(C-H) = 1.092 LHCNa = 114.3	<i>cis</i> ·CH ₂ Na ₂	$C_{2\nu}$ planar	\angle HCH = 109.47 r(C-Na) = 1.946 r(C-H) = 1.099 \angle N _a CN _a = 92.9 \angle HCH = 103.2

Table III. Calculated Geometries (RHF/STO-3G) of Tetrahedral² and Planar Structures^a

5422

Journal of the American Chemical Society / 98:18 / September 1, 1976

Table III (Continued)

Malanda	Symmetry and	Optimized	Malagula	Symmetry and	Optimized
Molecule	structure	parameter	Molecule	structure	
trans-CH ₂ Na ₂	D_{2h}	r(C-Na) = 2.012	Diboracyclopropane (XV)	$C_{2\nu}$ planar	r(C-B) = 1.514
		r(C-H) = 1.036			r(C-H) = 1.085
<i>cis</i> •CLi ₂ F ₂	$C_{2\nu}$ planar	r(C-F) = 1.401			\angle HCH = 101.3
		r(C-Li) = 1.695			$\angle BCB = 57.5$
		2FCF = 99.50	Diboracyclopropane (XV)	$-C_{2v}$ tetrahedral	r(C-B) = 1,540
	0	$\angle L_1 C_{L_1} = 117.1$			r(C-H) = 1.082
$CL1_2F_2$	$C_{2\nu}$ tetrahedral	r(C-F) = 1.380			\angle HCH = 110.53
		$r(C-L_1) = 2.118$	224553	C	$\angle BCB = 63.1$
		$\angle FCF \neq 105.4$	2,3,4,5-1etrabora-	C_{2v} planar	r(C-B) = 1.527
Cyclonronene	C planar	r(C - C) = 1.693	spiropentane (XVI)	C	$\angle B \cup B = 60.2$
Cyclopropelle	C_{2V} planai	r(C H) = 1.058	2,3,4,5 · letrabora-	C_{2V} tetranedral	r(C-B) = 1.531
		/C C C = 43.0	2 2 Dilithia mula	C totrohodrol	$\angle B \cup B = 61.2$
		$/HC_{2}H = 124.4$	5,5-Dilitilocyclo-		$r(C_3 - LI) = 2.092$
Cyclopropane	C.,, planar	$r(C, -C_{-}) = 1.542$	propene		$/(C_3 - C_1) = 1.490$
,	-2V F	r(C, -H) = 1.063			2 LICLI = 102.0
		$\angle C_{2}C_{1}C_{2} = 54.4$	1.1 Dilithia avalantanana	C -lanar	$2C_1C_3C_2 = 50.0$
		$\angle HC_{1}H = 110.8$	(XVIIa)	C_{2V} planal	r(C - LI) = 1.733
Lithio cyclopro-	C,	$r(C_1 - Li) = 1.702$	(AVIIC)		$(C_1 - C_2) = 1.330$
pane	5	$r(C_1 - C_2) = 1.496$			1 - 100.02
		$r(C_1 - C_2) = r(C_1 - C_2)$	1 1-Dilithiogyclopropage	C tetrahedral	$2C_2C_1C_3 = 38.0$ $r(C_1i) = 1.952$
		(ass.)	(XVIIa)		r(C-C) = 1.526
		$r(C_1 - H) = 1.068$	()() ()		/(C=C) = 1.520 / LiCLi = 106.5
		$\angle C_2 C_1 C_3 = 60.9$			$\angle CCC = 58.6$
		∠LiCH = 70.6	3.3-Dilithio-1.2-diboracyclo-	Cau planar	r(C-Li) = 1.802
		∠CCLi = 93.3	propane (XIX)	- 20 planar	r(C-B) = 1.485
Lithiocy clopro-	C _s tetrahedral	$r(C_1 - Li) = 1.961$	propune (min)		/LiCLi = 129.5
pane		$r(C_1 - C_2) = 1.513$			$\angle BCB = 62.3$
		$r(C_1 - H) = 1.084$	3,3-Dilithio-1,2-diboracyclo-	$C_{2\nu}$ tetrahedral	r(C-Li) = 1.831
		$\angle C_2 C_1 C_3 = 59.0$	propane (XIX)	27	r(C-B) = 1.510
		$\angle LiCH = 117.8$	• • · ·		∠LiCLi = 123.7
		$\angle L_{1}C_{1}C_{2} = 123.9$			∠BCB = 61.3

^a Bond lengths in angströms, angles in degrees. See structures IX and X for specification of atoms. Unlisted parameters have standard values (ref 16). Exocyclic hydrogens lie in the plane perpendicular to and bisecting the ring angle. ^b Local C_{av} symmetry assumed for the tetrahedral methyl group which has dihedral angle H_aCCH of 90°. ^cUHF/STO-3G geometries for triplet states.

difference increases somewhat. This repulsive σ effect is less significant with BeH substituents, and a steady decrease in the planar-tetrahedral energy differences is noted in going from CH₃BeH (Table V) to C(BeH)₄ (Table VI).

The repulsive σ effect is revealed more dramatically in the case of C(BH₂)₄. The planar D_{4h} structure, XIVa, lies 54 kcal/mol higher in energy than the D_{2h} structure XIVb. This

is attributed to relief of the unfavorable interactions between hydrogen atoms. Alternatively, a "propeller" type distortion to the D_4 structure XIVc results in an energy intermediate between those of XIVa and XIVb. Evidently, a large amount of the favorable π delocalization must be sacrificed in order to overcome the unfavorable interligand steric effects.

Some second-row substituents, Na and Cl, were examined as well (Tables V, VI, and VIII). These elements demonstrated the same trends as were observed for the first-row substituents in that sodium lowered the inversion barrier in CH₃Na and CH₂Na₂ while Cl raised the barrier of CH₂LiCl relative to that of CH₃Li. However, sodium had a much smaller stabilizing effect than lithium presumably because of the diffuseness of its 3p orbitals. For the same reason, chlorine is not as destabilizing as fluorine since the unfavorable C_{π} -X (lone pair) (X

Figure 2. Four molecular orbitals of cis-planar $CH_2Li_2(C_{2e})$. The HOMO (1b₁) of the singlet shows the three-center, two-electron "homoaromatic" π bonding. The 5a₁ MO is the LUMO in the singlet, but the HOMO in the triplet. Because of the diffuseness of the p orbitals on lithium, a contour of 0.06 au was employed.

Schleyer et al. / Stabilization of Planar Tetracoordinate Carbon

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				STO-3G optimized geometry			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		RHF/STO-3G Star	ndard geometry ^a	RHF/S	TO-3G	RHF/4	-31G
CH ₄ (D)39.726 86 -39.344 30 -39.726 86 -39.344 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 416.136.747 41113.456 862 -136.748 -113.456 43 -114.546 32114.546 32114.546 32114.546 32114.546 32114.546 32114.546 32114.546 32236.01 542	Molecule	Tetrahedral	Planar	Tetrahedral	Planar	Tetrahedral	Planar
CH, F (X)137.168 36 ⁴ 136.69 47137.169 06 ⁶ 136.747 31138.85 66 ⁶ 138.514 99 CH, OH (OH perpendicular)94.03 43 ⁴ 113.087 19113.148 61114.456 25 ⁶ 114.544 60 CH, OH (OH perpendicular)94.03 43 ⁴ 113.107 7494.03 86 ⁶ 93.61 9895.064 98 ⁶ 114.546 03 CH, CH, (MIR)73.306 18 ^d 77.90 5378.306 18 ^c 77.921 2679.115 32 ^c 78.137 69 CH, BH, (VIR)64.666 5064.467 08 - 64.667 09 - 64.621 22 - 65.347 7265.137 85 ^c CH, BH, (VIR)64.6469 9964.473 8864.667 09 - 64.621 23 22 - 65.347 7265.138 08 CH, BH, (VIR)64.519 9962.347 8264.318 0365.138 05 CH, BH, (VIR)102.70 79129.902 21130.271 56129.925 61131.727 1277.103 50 CH, CH,77.053 2177.045 2177.040 6877.239 4564.318 05 CH, CH, CH, plana)68.592 1677.024 9677.025 9378.195 9646.891 92 CH, CH, CH, plana)68.592 1677.024 9677.035 9378.195 9677.925 46 cH, CH, CH, plana)68.592 1664.47 67 1 -68.592 99 - 66.503 7 - 69.338 31 - 69.266 91 92 CH, CH, CH, plana)68.592 1668.476 71 - 68.592 99 - 66.503 7 - 69.338 31 - 69.266 91 92 CH, CH, CH, plana)68.592 1653.074 9953.086 6653.778 5453.788 54 -64.21 (DeH), - 97.526 43 - b -97.531 98 - 97.480 43 circH, L, CH) - 97.526 43 - b -97.531 9897.480 43 -66.644 5260.598 8260.598 81 -66.641 9366.519 9364.661 3960.598 8260.598 81 -66.21 (DeH),53.016 1035.1075 1933.774 5453.788 05 -53.046 6653.789 0453.988 13 -67.214, L, CH)14.461 1614.461 1614.465 13061.438 90 -66.661 9366.519 9364.651 9364.651 9364.651 93 -66.141, -26.529 - 1-127.777 52127.797 75127.891 11 -103.061 93103.089 43 -69.0409 07133.020 40136.093 13136.059 81 -104.040 168119.045 17139.364 17 -113.040 90 87103.061 93103.089 43 -040006 88 ^k CH, L, CN101.876 82101.885 66011.885 69101.9	CH ₄ (I)	-39.726 86	-39.344 30	-39.726 86	-39,344 41	-40,139 76	-39,871 47
CH, OH (OH planar) -113.545 02 ²⁷ -113.167 19 -113.545 98 -113.126 43 -114.865 216 -114.546 32 CH, OH (OH prependicular) -94.03 43 ⁴ -33.81 65 -94.032 86 ⁶ -92.619 96 -95.064 98 -94.748 81 CH, OH (WHB) -73.06 18 ² -30.09 23 -73.00 186 -92.70 25 -79.115 827 -65.317 65 CH, DH (WHB) -64.665 89 ⁴ -64.07 08 -64.667 69 ⁶ -64.21 52 -65.37 72 -65.137 65 CH, DH (WHB) -64.645 92 -64.328 32 -64.637 30 -64.637 30 -64.638 30 -64.647 103 CH, DH (WHB) -64.647 99 -64.347 88 -46.421 52 -65.37 47 22 -65.137 65 CH, DH (WHB) -70.07 9 -129.902 23 -130.271 56 -129.925 61 -131.727 12 -131.475 02 CH, CH, (CH, planar) -98.937 38 -198.723 98 -198.404 08 -46.421 59 CH, CH, (CH, planar) -77.405 21 -77.021 29 -77.003 06 -77.035 93 -77.125 94 CH, CH, (CH, planar) -77.405 21 -77.021 29 -77.003 06 -77.035 93 CH, CH, (CH, planar) -77.405 21 -77.021 42 -77.408 06 -77.239 45 -78.194 96 -77.076 34 CH, CH, (CH, planar) -68.592 16 -64.476 71 -68.592 99 -68.503 75 -69.338 31 -69.266 91 -69.266 67 CH, CH, (CH, planar) -68.592 16 -64.476 57 -53.038 18 -82.988 52 CH (BeH), -97.526 43 b -97.531 98 -97.481 98 -97.481 98 -97.481 98 -66.466 69 -66.631 93 -64.631 39 -67.338 91 -69.266 69 CH (BeH), -97.526 43 b -97.531 98 -97.481 98 -97.481 98 -61.646 69 -66.519 31 -60.486 59 -53.078 46 -53.778 54 -53.788 05 -53.088 69 -70 -53.788 14 -53.037 18 -53.074 54 -53.788 05 -53.088 69 -75.198 94 -53.737 31 i i i ch CHL, (CH) -143.704 51 -153.831 70 -551.978 40 +53.787 51 -53.088 69 -753.198 71 -551.978 41 -53.788 05 -64.648 20 -53.773 54 -53.788 05 -53.698 69 -53.870 21 -60.088 659 -10.685 50 -248.058 01 -248.077 5 b -60.598 825 CH, (N, N) -143.704 51 -153.931 77 -551.978 44 7 -155.666 68 -153.93 -67.433 90 - -64.661 39 -66.561 93 -66.613 93 -66.651 93 -66.651 93 -66.651 93 -66.651 93 -66.651 93 -66.551 93 CH, (H, (N) -190.46 53/ -100.485 60 -101.885 69 -101.90 87 -103.061 93 -103.089 43 -60.666 68 -66.651 93 -66.51 93 -66.557 93 CH, (H, (M) -00.421 42 ⁴ 77 -127.142 61 -114.048 550 -116.6453 -122.046 53 -114.045 61 -114.048 5	$CH_{3}F(X)$	-137.168 36 ^d	-136,699 47	-137.169 06c	-136.747 31	-138,856 86 <i>°</i>	-138.514 99
CH, OH (OH) perpendicular) -11-11.07 74 -12-13.48 61 -11-14-464 03 CH, NH, (VIIIB) -94.030 43 -32.581 63 -32.61 96 -95.064 98 -94.748 87 CH, NH, (VIIIB) -713.056 183 -72.903 53 -78.306 186 -77.91 55 5 -91.74 74 CH, CH, (VIIIA) -64.66 50 -64.40 98 -64.667 699 -64.31 53 -65.477 72 -65.179 68 CH, PHI (VIIA) -64.66 50 -64.40 98 -64.667 699 -64.31 53 -65.477 72 -65.179 68 CH, PHI (VIIA) -64.66 50 -64.478 88 -64.21 597 -63.38 05 -64.959 62 -46.69 192 CH, PHI (IX) -46.419 99 -42.247 88 -64.21 597 -63.38 05 -64.959 62 -46.69 192 CH, CN -110.270 79 -12.9902 23 -110.271 56 -12.9925 61 -131.727 12 -45.979 60 CH, CH, CH, planar) -77.405 21 -77.204 26 -77.408 06 -77.239 45 -78.914 96 -77.076 54 CH, CH, (CH, perpendic- ular) -77.045 21 -77.204 26 -77.040 06 -77.239 45 -78.914 96 -77.076 54 CH, CH, (CH, planar) -77.405 21 -77.204 26 -77.08 06 -77.239 53 -64.938 31 -69.266 91 prane.CH, (BeH), -68.592 16 -68.476 71 -68.592 99 -66.850 75 -65.938 31 -69.266 91 prane.CH, (BeH), -81.505 72 -62.97 88 -83.051 18 -82.988 53 -66.264 69 -53.075 1 -53.714 54 -53.758 55 2005 CH, DH, (VII) -53.131 15 -53.074 59 -53.313 07 -53.107 51 -53.074 54 -53.789 84 -59.885 90 -59.870 21 -60.68 56 9 -60.589 81 -66.666 66 -50 -59.71 21 -66.7465 190 -53.139 46 -73.458 98 -53.048 69 -59.870 21 -66.7465 190 -53.789 84 1 1 1 casCH, Li, triplet (XXI) CH, Li, CN -143.704 51 -414.561 63 remarcH, 14, CN -445.03 27 -428.035 7 -459.798 44 1 1 1 casCH, Li, (NH) -33.58.10 -35.788 81 4 -358.865 77 -35.798 74 4 1 1 casCH, Li, (NH) -120.45 57 -122.46 57 -115.666 167 -115.366 177 -156.861 98 -123.078 67 -73.458 190 -73.788 14 -358.865 77 -35.798 98 -123.616 89 -103.865 99 -123.616 88 -101.888 59 -123.046 99 -23.788 81 4 -35.865 17 -35.798 14 1 1 casCH, Li, (NH) -139.45 51 -22.26 57 -122.964 59 -122.926 13 -116.689 23 -116.689 23 -116.689 23 -116.650 21 -101.876 62 -110.885 66 -101.888 69 -101.909 87 -103.061 93 -103.089 43 -103.089 43 -103.089 43 -103.089 43 -103.089 43 -103.089 43 -103.089 43 -103.089 43 -103.089 43 -103.089 43 -103.089	CH ₃ OH (OH planar)	$-113.545 02^{a}$	-113,087 19	-113.545 98 <i>°</i>	-113.126 43	-114,865 25 <i>c</i>	-114.534 29
CH, NH, (VIIIA) -94.03 4^{20} -93.581 69 -94.03 28 66 -92.619 96 -95.04 98 6 -94.74 74 88 7 CH, CH, H, (VIIIA) -64.66 50 -35.06 184 -77.99 53 -78.306 186 -92.63 75 50 -50.49 86 -94.74 74 88 7 CH, CH, H, (VIIIA) -64.66 50 -64.66 51 90 -64.63 135 22 -7.83.31 63 -64.67 69 19 -64.61 35 135 65 -64.51 93 65 -64.59 94 -64.59 94 -64.59 94 -46.59 94 -46.59 94 -46.59 94 -46.59 94 -46.59 92 -64.64 91 91 -41.57 02 -64.64 91 99 -77.007 9 -129.902 23 -130.271 56 -129.925 61 -131.727 12 -131.475 02 -77.021 29 -77.021 29 -77.023 94 -77.07 63 45 -77.021 29 -77.021 29 -77.023 94 -77.07 63 45 -77.021 29 -77.021 29 -77.025 93 -77.025 94 -77.025 93 -77.025 93 -77.025 93 -77.025 93 -77.025 93 -77.025 93 -77.025 94 -77.025 93 -77.025 94 -75.035 18 -99.53 95 -64.54 03 -64.54 06 94 -75.305 18 -99.53 19 8 -97.54 04 3 -66.54 09 -53.073 14 -53.073 64 -53.073 64 -53.073 64 -53.073 64 -53.073 64 -53.073 64 -53.073 64 -53.073 64 -53.073 64 -53.035 18 -59.885 90 -59.817 94 -53.379 31 -69.266 91 -63.64 62 -75.078 64 -53.079 54 -53.078 65 -53.078 64 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53.078 65 -53	CH_3OH (OH perpendicular)		-113.107 74		-113.148 61		-114.546 03
$\begin{array}{c} (H_1, H_1, (VIIIB) & -78.306 124 & -77.309 53 & -78.306 18 & -77.201 26 & -79.115 82 & -78.837 69 \\ (H_1, H_1, (VIIA) & -64.666 50 & -64.677 69 & -64.621 52 & -66.347 72 & -65.179 65 \\ (H_1, H_1, (IIB) & -45.112 24 & -53.23 53 & -45.153 127 & -64.338 05 & -54.73 72 & -66.179 65 \\ (H_1, H_1, (IIB) & -45.119 99 & -60.247 88 & -64.21 597 & -66.338 05 & -46.695 62 & -46.691 69 \\ (H_1, CN & -130.270 79 & -129.902 23 & -130.271 65 & -129.925 61 & -131.727 12 & -131.147 02 \\ (H_1, CN & -130.270 79 & -129.902 23 & -130.271 65 & -129.925 61 & -131.727 12 & -131.147 02 \\ (H_1, CN & -130.270 79 & -177.045 20 & -77.7045 & -77.704 50 & -77.704 54 & -78.194 96 & -77.706 54 \\ (H_1, CH_1, CH_1, patnar) & -77.405 21 & -70.271 29 & -77.704 80 & -77.705 93 & -78.194 96 & -77.076 54 \\ (H_1, CH_1, CH_1, patnar) & -73.052 16 & -68.476 71 & -68.592 99 & -68.503 75 & -69.338 31 & -69.266 91 \\ (Har) & -83.025 17 & -62.973 85 & -83.033 18 & -68.424 52 & -69.226 69 \\ (Har) & -35.226 69 & -68.431 08 & -30.531 89 & -97.539 84 & -53.774 54 & -53.789 10 \\ -53.030 64 & -53.134 07 & -53.046 11 & -53.774 54 & -53.789 10 \\ -53.030 64 & -53.134 07 & -53.031 80 & -53.074 54 & -53.789 10 \\ -53.046 (H_1, H_1, Hapter (XKI) & -53.031 15 & -53.039 64 & -53.739 94 & -53.789 31 \\ CHL_1, h & b & b & -59.835 90 & -53.739 94 & -53.789 31 \\ CHL_1, h & b & b & -59.836 59 0 & -53.739 94 & -53.789 31 \\ CHL_1, CN & -143.704 51 & -143.651 63 & -37.898 18 & -357.891 81 & -357.891 $	$CH_3 NH_2$ (VIIIA)	-94.030 43 <i>a</i>	-93.581 69	-94.032 86°	- 92.619 96	-95,064 98 <i>°</i>	- 94.748 87
CH,	$CH_3 NH_2$ (VIIIB)		-93.600 24		- 93.637 55		- 94.774 /4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₃	-78.306 184	-77.909 53	-/8.306 180	-77.921 26	-79,115 820	-78.837 69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_3BH_2 (VIIA)	-64.666 50	-64.407 08	-04,00/ 098	-64.421 52	-65,347 72	-05.1/9 05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_3BH_2 (VIIB)	54 152 24	-04.328 20	54 152 DOF	-04.381 03	54 722 40	-03,138 08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_{1}EH$	-54.152 24	-55.929 20	-34.133 221 A6 A21 59f	-33.993 03	-34,733 49	-34.007 91
Citl, Na, 198, 712, 98, 712, 98, 712, 98, 712, 98, 712, 98, 714, 98, 712, 98, 714, 98, 712, 714, 714, 714, 714, 714, 714, 714, 714	CH CN	-130 270 79	-129902723	-13027156	-129 925 61	131 727 12	-13147502
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH N ₂	-198 937 38	-129.902 23 -198.732 98	-198.940.68	-198 819 00	-151,727 12 i	-151.475 02 i
CH_CH_Y_CH_perpendic- ian) CH_CH_Y_CH_perpendic- ian) CH_CH_K_HCH_, CH_D_F_N = -77.021 29 - 77.025 93 - 77.025 46 ian) CH_CH_K_HCH_L CH_L CH_L	CH_{CH}^{+} (CH_{ch}^{+} planar)	-7740521	-77 204 26	-77 408 06	-77 239 45	-78 194 96	-77 076 34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH CH ⁺ (CH ⁻ perpendic-		-77 021 29	77.400 00	-77.053.93	-70,174 70	-77.925 46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ular)		77.021 27		11.000 90		11.520 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-CH _a (BeH) _a	-68.592 16	-68.476 71	-68.592 99	-68.503 75	-69.338 31	-69.266 91
CH(BeH),83.050 72 -82.973 85 -83.053 18 -82.988 52 C(BeH), -97.526 43 b -97.531 98 -97.480 43 $cisCH_{1,L1}$ (XID -53.131 15 -53.074 59 -53.134 07 -53.0751 -53.774 54 -53.788 08 $cisCH_{1,L1}$ (XID -53.131 15 -53.074 59 -53.134 07 -53.0761 -53.079 94 -53.698 81 $cisCH_{1,L1}$ (XID -53.030 64 -53.079 94 -53.698 81 $cisCH_{1,L1}$ (XID -53.030 64 -53.89 91 -60.608 650 -60.568 82 CL1 b b b -59.885 90 -59.870 21 -60.608 650 -60.568 82 CL1 $cisCH_{1,N2}$ -358.061 10 -357.958 14 -358.063 77 -357.978 44 i i i $cisCH_{1,N2}$ -143.704 51 -143.603 93 -67.455 130 -67.438 900 $cisCH_{1,N2}$ -143.704 51 -143.603 93 -143.603 93 -67.455 130 -67.438 900 $cisCH_{1,N2}$ -143.704 51 -143.603 93 -143.603 93 -115.641 688 -115.641 688 -115.401 58 Cyclopropane -115.660 37 -115.344 76 -155.666 168 -115.361 74 -116.883 508 -115.641 688 -115.401 58 Cyclopropane -115.656 56 -122.204 65 -122.204 59 -122.261 31 -123.698 98 -123.616 38 Diboracyclopropane (XV) -88.342 75 -88.260 18 -88.344 33 -88.289 85 -89.312 84 -89.281 81 spiropentane (XVI) 1,1-Dilithicoyclopropane -13.05.05 74 -129.037 51 -129.059 86 -129.071 26 b b pane (XVII) 3,2-4,5-Tetrabora137.020 4 -136.993 93 13 -137.015 75 -138.551 82 -138.543 38 spiropentane (XVI) 1,1-Dilithicoyclopropane (XIX) Cycloperataler (VI) -190.446 53/ -190.145 93/ Phenonium ion (II) -304.231 42 ^k -304.096 58 ^k COHL _{1,L} (XIVN) -139.497 19 -139.277 62 CHH _{2,L} (XIVN) -139.497 19 -139.277 62 CHH _{2,L} (XIVN) -139.497 19 -139.246 17 CH _{2,L} -242.162 80 ^k -241.828 62 ^k CC L_{L} -197.044 75 ^j -197.168 61 ^m $=\sqrt{L_{L}}^{L}$ -203.877 03 ^j -203.902 88 ^m	trans-CH, (BeH),		-68.431 08		-68.442 52		-69.226 69
C(BeH), $-97.80 + 43$ detC(H,Li, (XI)) $-53.131 + 5$ -53.076 + 59 -53.134 + 07 -53.134 + 07 -53.134 + 07 -53.134 + 07 -53.134 + 07 -53.134 + 07 -53.134 + 07 -53.138 + 69 -53.137 + 66 -53.139 + 67 -53.137 + 66 -53.139 + 67 -53.139 + 67 -53.139 + 67 -53.139 + 67 -53.139 + 67 -53.795 + 14 -53.795 + 14 -53.795 + 14 -53.795 + 14 -66.666 + 68 -66.631 + 93 -67.465 + 13067.458 + 90 -67.458 + 13067.458 + 13067.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100110.458 + 100100 - 00100.458 + 100 - 000	CH(BeH)	-83.050 72	-82.973 85	-83.053 18	-82.988 52		
$\begin{array}{c} discH_{1,L}(XII) & -53.131 \ 15 & -53.074 \ 59 & -53.134 \ 07 & -53.1075 \ 11 & -53.778 \ 54 & -53.788 \ 08 \ 10 & -53.098 \ 81 & -53.098 \ 81 & -53.098 \ 81 & -53.098 \ 81 & -53.098 \ 81 & -53.098 \ 81 & -53.098 \ 81 & -53.098 \ 81 & -59.885 \ 90 & -59.870 \ 21 & -60.08 \ 850 & -115.303 \ 10 & -143.051 \ 83 & -115.641 \ 688 & -115.401 \ 168 & -115.640 \ 688 & -115.641 \ 788 \ 788.74 \ $	C(BeH) ₄	-97.526 43	b	-97.531 98	-97.480 43		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-CH ₂ Li ₂ (XII)	-53.131 15	-53.074 59	-53.134 07	-53.107 51	-53,774 54	-53.758 05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	trans-CH ₂ Li ₂ (XI)		-53.030 64		-53.048 69		-53,698 81
CHL1, b b b -59.870 21 -60.608 65° -60.596 82° CL1, b b b -66.666 68 -66.63 93 -67.458 90° $ets CH_{13}$, -357.958 14 -358.063 77 -357.978 44 <i>i i</i> i <i>i</i> $tirs CH_{13}$, CN -143.704 51 -143.651 63 $rans CH_{14}$, CN -143.704 51 -143.651 63 $rans CH_{14}$, CN -248.032 79 -248.032 97 $ets CL_{14}$, CN -248.032 79 -248.032 97 $ets CL_{15}$, CN -248.032 79 -248.032 97 cyclopropane -115.666 37 -115.344 76 -115.466 ts -115.461 68 <i>s</i> -115.461 68 <i>s</i> -115.461 68 <i>s</i> thiosyclopropane -122.356 56 -122.204 65 -122.364 59 -122.261 31 -123.698 98 -123.616 38 Diboracyclopropane (XU) -88.342 75 -88.260 18 -88.344 33 -88.268 58 -89.312 84 -89.281 81 1,1-Dilithiocyclopropane (XVI) 1,3-Dilithiocyclopropane (XV) 1,3-Dilithiocyclopropane (XV) 3,3-Dilithiocyclopropane (XIX) cyclopropane (XIX) -101.876 82 -101.885 66 -101.888 69 -101.909 87 -103.061 93 -103.089 43 cyclopropane (XIX) cyclopropane (XIX) -190.446 53 <i>j</i> -190.145 93 <i>j</i> Phenonium ion (II) -304.231 42 <i>k</i> -304.096 58 <i>k</i> $c(BH_1)_4$ (XIVA) -139.497 19 -139.277 62 cyclopropane (XIX) cyclopropane (XIX) -199.364 17 -139.364 17 -139.364 17 -139.363 89 ⁿ $cycl_{14}$ -228.253 16 ^h -228.034 99 ^h $cycl_{14}$ -228.253 16 ^h -228.034 99 ^h $cycl_{14}$ -228.253 16 ^h -228.034 99 ^h $cycl_{14}$ -127.042 77 0.302.860 70 ^l $cycl_{14}$ -127.043 75 0.302.860 70 ^l $cycl_{14}$ -228.033 09 ^l -302.860 70 ^l $cycl_{14}$ -228.037 03 ^j -203.902 88 ^m	cis-CH ₂ Li ₂ triplet (XXI)			-53.152 50	-53.137 66	-53.799 94	-53.795 31
CLi, b - 6666 68 -6631 93 -67.455 13° -67.458 90° ic*CH, Na, -358.061 10 -357.958 14 -358.063 77 -357.978 44 i i i trans-CH, Na, -357.883 18 -357.863 18 -357.891 73 i i ic*CLi, F, (XX) -143.051 63 -143.661 63 -143.661 63 -143.661 63 -143.663 93 ic*CLi, F, (XX) -248.032 77 -248.020 57 -248.058 01 -248.077 75 b b b Cyclopropene -114.933 25 -114.055 26 -114.0401 16\$ -114.088 35 -115.641 68\$ -115.663 97 -115.363 47 -116.883 50\$ -116.659 23 Lithiocyclopropane -115.660 3 -116.059 98 -122.364 59 -137.015 75 -138.551 82 -138.541 88 spiropentane (XVI) 1,1-0ilithiocyclopropane -129.057 43 -129.037 51 -129.059 86 -129.071 26 b b 3,3-Dilithiocyclopropane (XIX) -101.876 82 -101.885 66 -101.888 69 -101.909 87 -103.061 93 -103.089 43 clopropane (XIX) Cyclopentatiene (XVI) -190.446 53j -190.145 93j Cyclopentatiene (XVI) -190.446 53j -190.145 93 / COBH,j, (XIVA) -139.497 19 -139.277 62 COBH,j, (XIVA) -139.497 19 -139.277 62 COBH,j, (XIVA) -139.497 19 -139.238 80^{-1} CickH,j, (XIVA) -139.497 19 -139.238 80^{-1} CickH,j, (XIVA) -129.610 92 cyclopropane cyclopropane cyclopropane cyclopropane cycl,+* -228.253 16 ^h -228.034 99 ^h CickH -143.863 00 ^k -234.888 86 ^k CickH -197.044 75 ^k -197	CHLi ₃	Ь	b	-59.885 90	-59.870 21	-60.608 65 <i>0</i>	-60.596 820
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CLi ₄	<i>b</i>	<i>b</i>	-66.666 68	-66.631 93	-67,465 130	-67,438 900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-CH ₂ Na ₂	-358.061 10	-357.958 14	-358.063 77	-357.978 44	i	i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	trans-CH ₂ Na ₂	142 204 51	-357.883 18		-357.891 73	ı	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-CHL ₁₂ CN	-143./04.51	-143.651 63				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rig CLi E (XX)	248 022 70	-143.003 93	248.058.01	248 077 75	Ь	Ь
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cyclopropene	-248.032 73 -114 393 25	-248.020 37 -114.035 26	-11440116g	-114 088 35	-115 641 688	-115 401 58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cyclopropage	-115 660 37	-11534476	-155 666 168	-11536347	-116 883 508	-116,659,23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lithiocyclopropane	-122 356 56	-122 204 65	-122 364 59	-12226131	-123.69898	-123.616 38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diboracyclopropane (XV)	-88.342 75	-88.260 18	-88.344 33	-88.289 85	-89.312 84	-89.281 81
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.3.4.5-Tetrabora-	-137.020 04	-136,993 13	-137.032 13	-137.015 75	-138.551 82	-138.541 38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	spiropentane (XVI)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1-Dilithiocyclopropane	-129.057 43	-129,037 51	-129,059 86	-129.071 26	b	b
3,3-Dilithiocyclopropene (XVIII) 3,3-Dilithiocy,2-diboracy- clopropane (XIX) Cyclopentadiene (VI) -190.446 53 <i>j</i> -190.145 93 <i>j</i> Phenonium ion (II) -304.231 42 <i>k</i> -304.096 58 <i>k</i> C(BH ₂) ₄ (XIVA) -139.497 19 -139.277 62 C(BH ₂) ₄ (XIVK) -191.592 20 -191.326 40 CH ₂ LiF -143.863 07 -143.644 17 CH ₂ LiCl -500.429 36 -500.222 77 1-Lithiol-1-fluoro- cyclopropane C ₄ H ₇ ⁺ -228.253 16 ^h -228.034 99 ^h C ₄ H ₇ ⁺ -242.162 80 ^k -241.828 62 ^k C ₄ H ₇ ⁺ -197.044 75 <i>j</i> -197.168 61 ^m C ₄ H ₁ C ₄ Li C	pane (XVII)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3,3-Dilithiocyclopropene	-127.764 27	-127.777 52	-127.797 27	-127.812 11		
3,3-Dilithio-1,2-diboracy- clopropane (XIX) Cyclopentadiene (VI) -190.446 53 ^j -190.145 93 ^j Phenonium ion (II) -304.231 42 ^k -304.096 58 ^k C(BH ₂) ₄ (XIVA) -139.497 19 -139.277 62 C(BH ₂) ₄ (XIVC) -139.364 17 C(BH ₂) ₄ (XIVC) -139.363 07 -143.644 17 CH ₂ LiF -143.863 07 -143.644 17 CH ₂ LiF -143.863 07 -143.644 17 CH ₂ LiCl -500.429 36 -500.222 77 1-Lithio-1-fluoro- cyclopropane C ₄ H ₇ ⁺ -228.253 16 ^h -228.034 99 ^h $\bigcirc \downarrow \overset{\text{Li}}{\underset{\text{Li}}}$ -242.162 80 ^k -241.828 62 ^k $\bigcirc \overset{\text{Li}}{\underset{\text{Li}}}$ -197.044 75 ^j -197.168 61 ^m $\bigcirc \overset{\text{Li}}{\underset{\text{Li}}} \overset{\text{Li}}{\underset{\text{Li}}}$ -203.877 03 ^j -203.902 88 ^m	(XVIII)						
clopropane (XIX) Cyclopentadiene (VI) $-190.446 53^{j}$ $-190.145 93^{j}$ Phenonium ion (II) $-304.231 42^{k}$ $-304.096 58^{k}$ C(BH ₂) ₄ (XIVA) $-139.397 19$ $-139.277 62$ C(BH ₂) ₄ (XIVB) $-139.364 17$ Spiropentane $-191.592 20$ $-191.326 40$ CH ₂ LiF $-143.863 07$ $-143.644 17$ CH ₂ LiCI $-500.429 36$ $-500.222 77$ 1'-Lithio-1-fluoro- $-219.817 72$ $-219.601 92$ cyclopropane $-235.063 00^{k}$ $-234.988 86^{k}$ C+Li $-242.162 80^{k} -241.828 62^{k}$ $-302.963 09^{l}$ $-302.860 70^{l}$ C+Li $-302.963 09^{l} -302.860 70^{l}$ $-302.877 03^{j} -203.902 88^{m}$ $-203.877 03^{j} -203.902 88^{m}$	3,3-Dilithio-1,2-diboracy-	-101.876 82	-101.885 66	-101.888 69	-101.909 87	-103.061 93	-103.089 43
$\begin{array}{cccc} Cyclopentadiene (VI) & -190.446 53^{7} & -190.145 93^{7} \\ Phenonium ion (II) & -304.231 42^{k} & -304.096 58^{k} \\ C(BH_{2})_{4} (XIVA) & -139.497 19 & -139.277 62 \\ C(BH_{2})_{4} (XIVC) & & -139.323 89^{n} \\ Spiropentane & -191.592 20 & -191.326 40 \\ CH_{2}LiF & -143.863 07 & -143.644 17 \\ CH_{2}LiC1 & -500.429 36 & -500.222 77 \\ 1-Lithio-1-fluoro- & -219.817 72 & -219.601 92 \\ cyclopropane \\ C_{4}H_{7}^{+} & -228.253 16^{h} & -228.034 99^{h} \\ \hline \\ \hline \\ \hline \\ Li & -242.162 80^{k} & -241.828 62^{k} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$	clopropane (XIX)	100 110 001					
Phenonium ion (II) $-304.231 42^{k}$ $-304.096 58^{k}$ $C(BH_2)_4$ (XIVA) $-139.497 19$ $-139.277 62$ $C(BH_2)_4$ (XIVC) $-139.323 89^{n}$ Spiropentane $-191.592 20$ $-191.326 40$ CH_1LiF $-143.863 07$ $-143.644 17$ CH_2LiC1 $-500.429 36$ $-500.222 77$ -1.1thio-1-fluoro- $-219.817 72$ $-219.601 92cyclopropaneC_6H_7^+ -228.253 16^{h} -228.034 99^{h}\bigcirc \downarrow \overset{Li}{Li} -242.162 80^{k} -241.828 62^{k}\bigodot \downarrow \overset{Li}{Li} -302.963 09^{I} -302.860 70^{I}\bigcirc \downarrow \overset{Li}{Li} -197.044 75^{j} -197.168 61^{m}\bigcirc \downarrow \overset{Li}{Li} -203.877 03^{j} -203.902 88^{m}$	Cyclopentadiene (VI)	-190.446 53/	-190.145 93/				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Phenonium ion (II)	-304.231 42~	-304.096 58~				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(BH_2)_4$ (XIVA)	-139.49/ 19	-139,277 62				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(BH_2)_4$ (XIVB)		-139.364 17				
Spiropentane -191.392 20 -191.326 40 CH_2LiF -143.863 07 -143.644 17 CH_2LiCl -500.429 36 -500.222 77 1-Lithio-1-fluoro- -219.817 72 -219.601 92 $cyclopropane$ -228.253 16 ^h -228.034 99 ^h $(-+)^{H}$ -235.063 00 ^k -234.988 86 ^k $(-+)^{Li}$ -242.162 80 ^k -241.828 62 ^k $(-+)^{Li}$ -302.963 09 ^l -302.860 70 ^l $(-+)^{Li}$ -197.044 75 ^j -197.168 61 ^m $(-+)^{Li}$ -203.877 03 ^j -203.902 88 ^m	$C(BH_2)_4$ (XIVC)	101 500 00	-139.323 89"				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Spiropentane	-191.592 20	-191.326 40				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ L1F	-143.863 07	-143.044 17				
$\begin{array}{c} -219.317 72 & -219.301 92 \\ \hline \\ cyclopropane \\ \hline \\ C_{q}H_{7}^{+} & -228.253 16^{h} & -228.034 99^{h} \\ \hline \\ \hline \\ Li & -235.063 00^{k} & -234.988 86^{k} \\ \hline \\ \hline \\ \hline \\ Li & -242.162 80^{k} & -241.828 62^{k} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ Li & -302.963 09^{l} & -302.860 70^{l} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	CH ₂ LICI	-300.429 30	-300.222 //				
C ₆ H ₇ + -228.253 16 ^h -228.034 99 ^h $\textcircled{C}_{4}H_{7}^{+}$ -235.063 00 ^k -234.988 86 ^k \textcircled{C}_{Li} -242.162 80 ^k -241.828 62 ^k \textcircled{C}_{Li} -302.963 09 ^l -302.860 70 ^l \fbox{Li} -197.044 75 ^j -197.168 61 ^m \fbox{Li} -203.877 03 ^j -203.902 88 ^m		-219.01/ /2	-219.001 92				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-228 253 16h	$-228 034 99^{h}$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\langle \oplus \rangle \subset \prod_{Li}^n$	$-235.063 \ 00^{k}$	-234.988 86 ^k				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-242 162 80k	_241 828 62k				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-242.102 00"	-2-1.020 02"				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c} & & \\$	$\langle \oplus \rangle \triangleleft$	-302.963 09 ¹	-302.860 70 ¹				
$\begin{array}{c} \swarrow & -197.044 \ 75j & -197.168 \ 61m \\ \swarrow & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$							
$ = 203.877 \ 03^{j} = -203.902 \ 88^{m} $	$ \sum_{i=1}^{n} $	-197.044 75 <i>i</i>	-197.168 61 ^m				
$-203.877 \ 037 \ -203.902 \ 88^{m}$							
		-203.877 03/	-203.902 88 ^m				

^a See Table VII, footnote a. Parenthetical structural descriptions refer to orientations of substituents in the planar arrangements. ^b Convergence on the density matrix was not achieved. ^c W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, *Prog. Phys. Org. Chem.*, 11, 175 (1974). ^d W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, *J. Am. Chem. Soc.*, 92, 4796 (1970). ^e J. D. Dill, P. v. R. Schleyer, and J. A. Pople, *ibid.*, 97, 3402 (1975). ^f J. D. Dill, J. A. Pople, and P. v. R. Schleyer, to be published. ^g W. A. Lathan, L. Radom, P. C. Hariharan, W. J. Hehre, and J. A. Pople, *Top. Curr. Chem.*, 40, 1 (1973). ^h W. J. Hehre and J. A. Pople, *J. Am. Chem. Soc.*, 94, 6901 (1972). ⁱ 44-31G basis set not yet available for Na. ^j Experimental geometry for cyclopentadiene ring (L. H. Sharpen and V. W. Laurie, *J. Chem. Phys.*, 43, 2765 (1965)). ^k Ring geometries from W. J. Hehre, *J. Am. Chem. Soc.*, 94, 5919 (1972), for planar structure, cyclopropyl fragment rotated 90°. ^lC₆H₅ fragment from footnote k, cyclopropyl fragment from footnote g. ^m H. Preuss and G. Diercksen, *Int. J. Quantum Chem.*, 1, 349 (1967). ⁿ Dihedral angle, $\varphi(H,B,C,C) = 35^\circ$. ^o Convergence achieved using direct descent technique (R. Seeger and J. A. Pople, J. *Chem. Phys.*, in press).

 Table V.
 Calculated Planar – Tetrahedral² Energy Differences

 (kcal/mol) for Monosubstituted Methanes (RHF)

	Basis set		
Molecule	STO-3G (standard geometry) ^a	STO-3G (STO-3G o geom	4-31G optimized etry)
CH, (I)	240	240	168
$CH_{+}F(X)$	294	265	215
CH ₃ OH (OH planar)	287	263	208
CH ₀ OH (OH perpendicular)	274	249	200
CH ₂ NH ₂ (VIIIa)	281	259	198
CH ₁ NH ₂ (VIIIb)	269	248	182
CH ₄ CH ₄	250	243	175
CH ₃ BH ₃ (VIIa)	164	155	106
CH, BH, (VIIb)	213	180	132
CH_BeH	140	100	79
CH ₂ Li (IX)	108	52	42 ^b
CH ₄ CN	231	217	158
CH _a Na	124	76	с
$CH_{3}CH_{3}^{+}$ (CH ₂ coplanar)	128	106	74
CH ₃ CH ₂ ⁺ (CH ₂ perpendicular)	243	222	169

^a Reference 16. ^b UHF/4-31G optimized structures have a difference of 38 kcal (see text). ^c 44-31G basis set not yet available for Na.

 Table VI.
 Calculated Planar-Tetrahedral² Energy Differences

 (kcal/mol) for Polysubstituted Methanes (RHF)

	Basis set		
Molecule	STO-3G (standard geometry) ^a	STO-3G (STO-3G c geome	4-31G optimized etry)
cis-CH ₂ (BeH) ₂	72	56	45
trans-CH ₂ (BeH) ₂	101	94	70
CH(BeH) ₃	48	41	
C(BeH) ₄	С	32	
cis-CH ₂ Li ₂ (XII)	35	17	10 ^b
trans-CH ₂ Li ₂ (XI)	63	54	47
CHLi3	С	10	7
CLi ₄	С	22	6
cis-CH ₂ Na ₂	65	59	
trans-CH ₂ Na ₂	112	108	
cis-CHLi ₂ CN	33		
trans-CHLi2CN	63		
$CLi_2F_2(XX)$	8	-25	С

^aReference 16. ^b 8 kcal/mol both at 6-31G^{*} (STO-3G geometries) and at 4-31G (4-31G geometries) (see text). ^cConvergence on the density matrix was not achieved.

= F, Cl) interaction is not as bad for the more diffuse chlorine 3p lone pair.

The high barriers to planarity of the carbenoids CH_2LiF and 1-lithio-1-fluorocyclopropane (Table VIII) support the recent findings of Hahnfield and Burton²⁴ on the stereochemical integrity of similar vinyl carbenoids. Contrary to an earlier report,²⁵ they found that these molecules did not isomerize in solution. Presumably, one possible mode of isomerization might have been a simple rotation of the LiCF group but this mechanism of rearrangement seems unlikely on the basis of our results.

Utilization of Small Rings

Three-membered rings overcome the steric problem. One can take advantage of such rings in two ways. The electropositive atoms can be incorporated into the ring structure, or they can be introduced as external substituents. Thus, XV meets the usual criteria for aromaticity in its planar arrangement, but the tetrahedral geometry is still preferred by 20 kcal/mol (RHF/4-31G). The same is true for XVI, a spiropentane analogue, but by only 6 kcal/mol (RHF/4-31G).

 Table VII.
 Calculated Planar – Tetrahedral² Energy Differences

 (kcal/mol) for Three-Membered Ring Compounds (RHF)

	Basis set				
Molecule	STO-3G (standard geometry) ^a	STO-3G (STO-3G c geome	4-31G optimized etry)		
Cyclopropene	225	196	151		
Cyclopropane ^c	198	190	141		
Lithiocyclopropane	95	65	52		
Diboracyclopropane (XV)	52	34	20		
2,3,4,5-Tetrabora- spiropentane (XVI)	17	10	6		
1,1-Dilithiocyclopropane (XVII) ^c	13	-7	b		
3,3-Dilithiocyclopropene (XVIII)	-8	$(-10)^{d}$	b		
3,3-Dilithio-1,2-diboracy- clopropane (XIX)	-6	-13	-17		

^{*a*} Reference 16; for planar molecules the standard bond angle is 90° except when a ring is present. In these cases the remaining substituents trisect the external angle. ^{*b*} Convergence on the density matrix was not achieved. ^{*c*} One carbon planar. ^{*d*} Incomplete optimization.

Table VIII. Calculated Planar – Tetrahedral² Energy Differences (RHF/STO-3G, kcal/mol) for Some Larger Systems at Standard Geometries

Molecule	Energy
Cyclopentadiene (VI)	189
Phenonium ion (II)	85
$C(BH_2)_4$ (XIVa)	84
$C(BH_2)_4$ (XIVb)	138
$C(BH_2)_4$ (XIVc)	113
Spiropentane ^b	167
CH ₂ LiF	137
CH ₂ LiCl	130
1-Lithio-1-fluorocyclopropane	135
H	137
	61
$\langle + \rangle \sim L_i$	21
\odot	102
	77
$L_{L_i}^{L_i}$	16

^{*a*} See Table VII, footnote a, and Table III for the geometries of individual molecules. ^{*b*} Central carbon planar.

1,1-Dilithiocyclopropane (XVII) achieves our objective; the planar form is calculated even at the RHF/STO-3G level to be the energy minimum! 3,3-Dilithiocyclopropene (XVIII), the rather exotic compound XIX, and the bis-carbenoid CLi_2F_2 (XX) are even more favorable in their preference for planar geometries.

Schleyer et al. / Stabilization of Planar Tetracoordinate Carbon

5426

Triplet States

An obvious additional question, emphasized by Murrell,^{5e} is the possibility of a triplet ground state. UHF/6-31G** calculations by Shavitt et al.66 indicate that triplet planar methane has an energy 2.5 kcal/mol lower than singlet planar methane. However, the problem of assessing triplet-singlet energy differences by single-determinant calculations is well known.²⁶ The stability of states of higher spin multiplicity is overestimated. For example, the stability of the triplet state of CH₂ is overestimated by $14 \pm 6 \text{ kcal/mol}^{27}$ at the Hartree-Fock level. Therefore, it is not surprising that when configuration interaction is employed singlet methane becomes the more stable planar configuration by 4 kcal/mol.^{6b} We have calculated the singlet-triplet difference for CH₂Li₂. The total energy of the planar triplet (UHF/4-31G) lies 23.4 kcal/mol below that of the planar singlet (RHF/4-31G). The tetrahedral triplet (UHF/4-31G) is only 15.9 kcal/mol below the tetrahedral singlet (RHF/4-31G). The planar distortion energy of the triplet is then only 2.9 kcal/mol (UHF/4-31G). In view of the overestimation of the stability of triplet methylene, it is difficult to assign the ground state configuration of CH₂Li₂ but the two states should be close in energy.

The structures of the two triplets, XXIa,b, show marked differences from the corresponding singlet geometries. For both

triplets an electron is removed from a LiCLi orbital of π type (symmetry b₁) and placed in a Li…Li σ bonding orbital (symmetry a₁). This results in a marked reduction of the \angle LiCLi angles (to ca. 69° in both XXIa and XXIb); threemembered rings are formed. The C-Li bond lengthenings (Table III) reflect the removal of an electron from the π bonding orbital. The presence of low-lying triplet configurations may contribute to the tendency of polylithium compounds to associate,²⁸ but nothing is known about this at present.

Geometries of Lower Symmetry

There remains the problem of determining the most stable geometry. Orientations other than T_d and D_{4h} are certainly possible for methane as are corresponding structures for substituted methanes. Indeed, Shavitt's work^{6b} indicates that a square-pyramidal $(C_{4\nu})$ geometry is preferred over square planar (D_{4h}) for methane suggesting that molecules such as cis, cis, cis, cis-fenestrane^{10b} would undergo a similar distortion as do several known carboranes.²⁹ However, complete relaxation of all symmetry constraints would result in a prohibitive computational burden and was not generally pursued here. In two cases we did carry out a somewhat more complete search (at the RHF/STO-3G level) to probe the possibility that a structure intermediate between the "tetrahedral" C_{2v} and planar C_{2v} structures might be even lower in energy. For the case of CF_2Li_2 , a form of C_2 symmetry, obtained by rotating the FCF plane in the cis planar form by 20° about the angle bisector, was found to lie 0.7 kcal/mol lower in energy than the planar structure. In contrast, a 5° rotation of the CLi₂ group in planar 1,1-dilithiocyclopropane (XVIIc) resulted in a higher energy.

Two promising systems, 5-lithiocyclopentadiene and 5,5dilithiocyclopentadiene (XXIIa and XXIIb), received no further attention since calculations at fixed geometries³⁰ showed that these molecules prefer the unrelated bridged structure XXIIa,b.

Proposed Experimental Systems for Study

After a century of tetrahedral carbon, these results are startling and invite experimental verification. For molecules in which the tetrahedral structures are more stable, but the tetrahedral-planar energy difference is low, stereomutation should be observable.³¹ Appropriately substituted phenonium ions are a possibility, but our ab initio results on II (Table VIII), although only with standard geometries, do not confirm the low MINDO/2 distortion energies^{12,32} and preliminary experimental work failed to detect planar inversion.⁹ A variety of alkyllithium compounds, including neohexyllithium³³ and the cyclopropyllithium derivative (XXIII),³⁴ are known to

stereomutate in solution.²⁶ A dissociation-recombination mechanism involving ions or ion pairs has generally been assumed.³³ Electron donor solvents may well favor this mechanism, but we suggest that planar inversion should receive serious consideration as an alternative in nonpolar solvents especially since the distortion energy for methyllithium is calculated to be only 38 kcal/mol (RHF/4-31G optimized structures). Furthermore the structures we have calculated for planar alkyllithium compounds resemble trigonal carbanions bridged by lithium cations with significant bonding, not merely electrostatic attraction, between lithium and carbon as well as between lithium and the other adjacent atoms, especially hydrogen.³⁵ Stereomutation of alkyllithium derivatives may also occur in associated species, but we have not yet considered such possibilities computationally.

Evidence for the existence of many di- and polylithium compounds, including CH_2Li_2 ,³⁶ CLi_4 ,³⁷ and the 1,1-dilithiocyclopropane derivative (XXIV),³⁸ has been reported,^{26,39} but their structures are not known experimentally. Our results indicate that molecules of this type, at least as isolated species in the gas phase, are likely to be planar or to have low planar distortion energies. Although the experimental verification of these predictions may be complicated by the tendency of lithium compounds to be associated or to be solvated in electron-donor solvents,²⁶ efforts to overcome these problems should be rewarding.

Acknowledgments. This work was supported by NSF Grants GP-29078X (Princeton) and GP-9338 (Carnegie-Mellon) and by the donation of computer time by Princeton University and by the University of Munich, where much of this work was carried out during the tenure of an award of the Alexander von Humboldt Foudation (to P.v.R.S.). We thank J. Stephen Binkley and Edward M. Engler for their contributions to this project and Dieter Poppinger for the use of an SCF convergence program. In addition we thank R. Hoffmann, R. West, D. E. Applequist, J. Liebman, K. Wiberg, W. L. Jorgensen, K. Mislow, and H. Wynberg for their helpful comments.

References and Notes

- (1) (a) Presented in part at the Autumn Meeting, Chemical Society of London, Perkin Division, Leicester, September 23–26, 1974, and at the 169th National Meeting of the American Chemical Society, Philadelphia, Pa., April 1975, Abstract No. ORGN 3; (b) Princeton University, (c) present address: Erlangen-Nürnberg; (d) Carnegie-Mellon University.
- (2) Exact tetrahedral geometry (T_d symmetry) is seldom encountered, as it is possible only when all four substituents are the same. As deviations from 109.5° bond angles are generally small, ''tetrahedral'' is often employed as we do here in a loose sense to describe the preferred bonding arrangement in saturated organic molecules.
- (3) (a) J. H. van't Hoff, Arch. Neerl. Sci. Exactes Nat., 445 (1874), translated (a) "Classics in the Theory of Chemical Combinations", O. T. Benfey, Ed., Dover Publications, New York, N.Y., 1963; (b) J. A. LeBel, Bull. Soc. Chim. Fr., 22, 337 (1874); (c) For historical reviews see D. F. Larder, J. Chem. Educ., 44, 661 (1967); H. A. M. Snelders, ibid., 51, 2 (1974); F. G. Riddell and M. J. T. Robinson, Tetrahedron, 30, 2001 (1974); W. J. LeNoble, "Highlights of Organic Chemistry", Marcel Dekker, New York, N.Y., 1974, pp 207 and 208 and "van't Hoff-LeBel Centennial", O. E. Ramsay, Ed., American Chemical Society Symposium Series 12, Washington, 1975.
- (4) A. F. Saturno, Theor. Chem. Acta, 28, 273 (1967); (b) R. Hoffmann, R. G. Alder, and C. F. Wilcox, Jr., J. Am. Chem. Soc., 92, 4992 (1970); R. Hoffmann, Pure Appl. Chem., 28, 181 (1971); (c) B. M. Gimarc, J. Am. Chem. Soc., 93, 593 (1971), Acc. Chem. Res., 7, 384 (1974); (d) R. J. Buenker and S. D. Peyerimhoff, Chem. Rev., 74, 127 (1974); (e) G. Herzberg, "Electronic Structure of Polyatomic Molecules", 3rd ed, Van Nostrand, Princeton, N.J., 1966, p 392.
- (5) (a) H. J. Monkhorst, J. Chem. Soc., Chem. Commun., 1111 (1968); (b) G.
 Olah and G. Klopman, Chem. Phys. Lett., 11, 604 (1971); (c) W. A. Lathan,
 W. J. Hehre, L. A. Curtiss, and J. A. Pople, J. Am. Chem. Soc., 93, 6377 (1971); (d) S. Durmaz, J. N. Murrell, and J. B. Pedlay, J. Chem. Soc., Chem. Commun., 933 (1972); (e) J. N. Murrell, J. B. Pedlay, and S. Durmaz, J. Chem. Soc., Faraday Trans. 2, 69, 1370 (1973); (f) H. Wynberg and L. A. Halshof, Tetrahedron, 30, 1775 (1974). Also see R. A. Firestone, J. Chem. Soc., Chem. Commun., 163 (1973).
 (6) (a) K. B. Wiberg and G. B. Ellison, Tetrahedron, 30, 1573 (1974); K. B.
- Wiberg, G. B. Ellison, and J. J. Wendolski, J. Am. Chem. Soc., 98, 1212 (1976); (b) S. Palalikit, P. C. Hariharan, and I. Shavitt, personal communication from Dr. Isaiah Shavitt. (Material presented as a Contributed Paper, Fifth Canadian Theoretical Chemistry Symposium, Ottawa, June, 1974).
- (7) D. M. Golden, R. Walsh, and S. W. Benson, J. Am. Chem. Soc., 87, 4053
- (8) (a) F. T. Smith, J. Chem. Phys., 29, 235 (1958); (b) Cf. R. Hoffmann, J. Am. Chem. Soc., 90, 1475 (1968). Also see K. E. Gilbert and J. E. Baldwin, ibid., 98, 1593 (1976)
- (9) G. A. Olah, private communication.
- (10) (a) V. Georgian and M. Saltzman, Tetrahedron Lett., 4315 (1972); (b) J. F.
- (10) (a) V. Georgian and M. Satzinati, *Feraneuron Lett.*, 43 (5 (1972), (b) 5. F. Liebman and A. Greenberg, *Chem. Rev.*, **76**, 311 (1976).
 (11) E. H. Hahn, H. Bohm, and D. Ginsburg, *Tetrahedron Lett.*, 507 (1973).
 (12) (a) M. Shanshal, *J. Chem. Soc.*, *Perkin Trans. 2*, 335 (1972); (b) W. W. Shoeller, *Chem. Commun.*, 872 (1974).
- (13) J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople, and L. Radom, J.
- available as Program No. 236 from the Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.) except for calculations using
- (15) (a) C. J. Roothaan, *Rev. Mod. Phys.*, 23, 69 (1951); (b) J. A. Pople and R. K. Nesbet, *J. Chem. Phys.*, 22, 571 (1954).
 (16) J. A. Pople and M. Gordon, *J. Am. Chem. Soc.*, 89, 4253 (1967), and the

following additions: C-Li = 2.01, C-Be = 1.69, C-B = 1.57, Be-H = 1.29. B-H = 1.16 (J. D. Dill, P. v. R. Schleyer, and J. A. Pople, J. Am. Chem. Soc., in press), and C-Na = 2.09 (J. B. Collins, unpublished).

- (17) M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 52, 4064 (1970).
- (18) (a) R. Ditchfield, W. J. Hehre, and J. A. Pople, *J. Chem. Phys.*, **54**, 724 (1971); (b) W. J. Hehre and J. A. Pople, *ibid.*, **56**, 4233 (1972); (c) J. D. Dill and J. A. Pople, *ibid.*, **62**, 2921 (1975); a 5-21G basis instead of 4-31G is used for lithium and beryllium.
- (19) (a) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 28, 213 (1973); (b)
- (19) (a) F. C. Harmaran and J. A. Pople, *Theor. Chim. Acta*, **26**, 21(1975), (b) J. D. Dill and J. A. Pople, *J. Chem. Phys.*, **62**, 2921 (1975). (20) Structures and total energies: 6-31G*, CH₄ (T_d) r = 1.084, E = -40.195 17; CH₄ (D_{4h}) r = 1.080, E = -39.922 45; 6-31G* CH₄ (T_d) E = -40.201 59; CH₄ (D_{4h}) E = -39.936 96 (using 6-31G* bond lengths). CH₂Li₂, STO-3G geometries (Table III), *E*(planar) = -53.81596, *E*(tetrahedral²) = -53,829 08
- (21) (a) J. S. Binkley and J. A. Pople, Int. J. Quantum Chem., 9, 229 (1975); (b) C. Moller and M. S. Plesset, *Phys. Rev.*, **46**, 618 (1934). Total energies: UMP/6-31G** $E(T_d) = -40.369$ 77, $E(D_{4h}) - 40.118$ 99. J. B. Collins, unpublished results.
- (23) Cis and trans planar isomers are common in inorganic compounds. For example, see M. C. Day, Jr., and J. Selbin, "Theoretical Inorganic Chem-Istry'', Reinhold, New York, N.Y., 1969, Chapter 10, or F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 3rd ed, Interscience, New York, N.Y., 1972, Chapter 1.
- J. L. Hahnfield and D. J. Burton, Tetrahedron Lett., 773 (1975).
- P. Tarrant, R. W. Whitfield, and R. H. Summerville, J. Fluorine Chem., 1, (25)31 (1971).
- (26) J. F. Harrison, Acc. Chem. Res., 7, 378 (1974).
 (27) C. F. Bender, H. F. Schaefer III, D. R. Franceschetti, and L. C. Allen, J. Am. Chem. Soc., 94, 6888 (1972).
- (28) B. J. Wakefield, "The Chemistry of Organolithium Compounds", Part I, Pergamon Press, New York, N.Y., 1974
- (29) T. Onak in "Boron Hydride Chemistry", E. Muetterties, Ed., Academic Press 1975. M. Thompson and R. Grimes, J. Am. Chem. Soc., 93, 6677 (1971).
- (30) Y. Apeloig, unpublished results, cf. H. Preuss and R. Janoschek, J. Mol. Struct., 3, 423 (1969); S. Alexandratos, A. Streitwieser, Jr., and H. F. Schaefer III, J. Am. Chem. Soc., in press.
- (31) Both twisting and flattening motions are symmetry allowed.40
- (32) The MINDO/3 value is 28.4 kcal/mol. E. D. Jemmis, unpublished results.
- (33) M. Witanowski and J. D. Roberts, J. Am. Chem. Soc., 88, 737 (1966).
- (34) G. Fraenkel, D. T. Dix, and M. Carlson, Tetrahedron Lett., 579 (1968).
- (35) Although optimization was not carried to completion, the planar distortion energy of cyclopropyllithium (Table V) is indicated to be higher than that of methyllithium, despite the strain effect which should favor the former. Planar methyllithium benefits from having two cis hydrogens, and this should be true for neopentyllithium³³ as well.
- (36) K. Ziegler, K. Nagel, and M. Patheiger, Z. Anorg. Allg. Chem., 282, 345 (1955)

- (1955).
 (37) C. Chung and R. J. Lagow, *Chem. Commun.*, 1078 (1972); L. G. Sneddon and R. J. Lagow, *ibid.*, 302 (1975); J. A. Morrison, C. Chung, and R. J. Lagow, *J. Am. Chem. Soc.*, 97, 5015 (1975).
 (38) D. E. Applequist and E. C. Saurborn, *J. Org. Chem.*, 37, 1676 (1972).
 (39) W. H. Glaze, *J. Organomet. Chem.*, 48, 1 (1973); 68, 1 (1974); R. West and P. C. Jones, *J. Am. Chem. Soc.*, 91, 6156 (1969); G. A. Goinowicz and R. West, *ibid.*, 93, 1714, 1720 (1971); I. A. Shimp and R. J. Lagow, *ibid.*, 95, 1343 (1973); J. Klein and J. Y. Becker, *J. Chem. Soc. Chem. Commun.* 877 (1973); J. Klein and A. Medlik-Balan, J. Chem. Soc., Chem. Commun., 877
- (1975), and other papers in the same series.
 (40) The figures were kindly provided by Professor W. L. Jorgensen; see W. L. Jorgensen and L. Salem, 'The Organic Chemists Book of Orbitals'', Academic Press, New York, N.Y., 1973.