OF THE AMERICAN CHEMICAL SOCIETY
 Registered in U.S. Patent Office. © Copyright, 1976, by the American Chemical Society

Stabilization of Planar Tetracoordinate Carbon ${ }^{1 a}$

John B. Collins, ${ }^{1 b, c}$ James D. Dill, ${ }^{1 b}$ Eluvathingal D. Jemmis, ${ }^{\text {1b,c }}$ Yitzhak Apeloig, ${ }^{1 b}$ Paul von R. Schleyer, ${ }^{* 1 b, c}$ Rolf Seeger, ${ }^{1 d}$ and John A. Pople ${ }^{\mathbf{1 d}}$
Contribution from the Departments of Chemistry, Princeton University, Princeton, New Jersey 08540, Institut für Organische Chemie, Universität ErlangenNürnberg, D-8520 Erlangen, Germany, and Carnegie-Mellon University, Pittsburgh. Pennsylvania 15213. Received August 26, 1975

Abstract

The energies of planar vs. tetrahedral geometries of tetracoordinate organic molecules have been surveyed by ab initio molecular orbital calculations. Because of their π acceptor and σ donor character, electropositive substituents, especially lithium, are particularly effective in stabilizing the planar arrangements selectively. Multiple substitution by such metals and by three-membered rings provides further stabilization, and 1,1-dilithiocyclopropane (XVII) and 3,3-dilithiocyclopropene (XVIII), inter alia, are actually calculated (RHF/STO-3G theory) to be more stable planar than tetrahedral.

van't Hoff and LeBel's proposal that tetracoordinate carbon prefers tetrahedral geometry ${ }^{2}$ celebrated its centenary in 1974. ${ }^{3}$ No fundamental exception, e.g., an organic compound in which all four substituents lie in a plane, is known. It is not difficult to understand why this should be so. Singlet planar methane is sp^{2} hybridized with a lone pair of electrons in the remaining p orbital (I). ${ }^{4}$ Consequently, only six electrons instead of eight are involved in bonding. Numerous theoretical calculations ${ }^{5}$ at different levels of sophistication have been applied to this problem and are summarized in Table I. The best available ab initio quantum mechanical calculations indicate $D_{4 h}$ singlet planar methane should be about $150 \mathrm{kcal} /$ mol less stable than the tetrahedral form. ${ }^{6}$ Since the bond dissociation energy of the C-H bond is only $104 \mathrm{kcal} / \mathrm{mol}^{7} D_{4 h}$ planar methane would not be expected to exist under any circumstances. Figure 1 shows the molecular orbitals of planar methane. ${ }^{40}$

Nevertheless, chemists have long been fascinated with the possibility that compounds might be found in which a carbon either is planar or can undergo planar inversion with a sufficiently low barrier to permit experimental detection. The possibility that the stereomutation of cyclopropane might proceed via the twisting of one of the methylene groups through the carbon plane was considered ${ }^{8 a}$ but has been rejected. ${ }^{8 b}$ MINDO/2 calculations suggest that the phenonium ion (II) may have a low barrier to planar inversion, but this process has not been detected experimentally. ${ }^{9}$ trans-Fenestrane (III), ${ }^{6,10}$ [2.2.2.2]paddlane (IV), ${ }^{11}$ and aromatic molecules such as $V^{4 b}$ have been suggested as possibilities having planar carbons, but none of these have yet been synthesized.

III and IV represent the traditional "brute-force" approach to problems of this type; such systems will be highly strained if not prohibitively so. Instead of contriving against nature, it might be better to find ways preferentially to stabilize planar over tetrahedral geometries.

I

IV

II

V

III

VI

Previous investigations (Table II), ${ }^{4,12}$ particularly that of Hoffmann, Alder, and Wilcox, ${ }^{46}$ have revealed how this might be done. For example, extended Hückel calculations (EHT) showed that the energy required to distort cyclopentadiene would be much reduced by the aromatic 6π-electron character of the planar form (VI). σ-Donating electropositive substituents such as $-\mathrm{SiH}_{3},-\mathrm{BH}_{2}$, and lithium should be effective in reducing the planar-tetrahedral energy difference, ${ }^{4 \mathrm{~b}}$ Since the "natural" angle in planar carbon derivatives is 90° instead of 109.5°, the introduction of small rings also should help to stabilize the planar forms since both angle strain and repulsive steric interactions between substituents would be reduced. ${ }^{9}$ This effect, along with π delocalization, contributes to the very low distortion energy ($19^{12 \mathrm{a}}$ or $22^{12 \mathrm{~b}} \mathrm{kcal} / \mathrm{mol}$) calculated by MINDO/2 for the planar phenonium ion (II). Another approach often previously proposed ${ }^{4}$ is simply to remove two electrons thereby giving a six valence electron species. Unfortunately, $\mathrm{CH}_{4}{ }^{2+}$, although calculated to prefer planarity strongly, is unstable toward dissociation into $\mathrm{CH}_{3}{ }^{+}$and H^{+}. ${ }^{13}$

Planar tetracoordinate carbon is a difficult problem to attack

Figure 1. Valence molecular orbitals of planar methane ($D_{4 h}$) arranged in order of increasing energy. The lower four are occupied in the singlet.
experimentally but it is easy computationally. Our approach has been to explore systematically by ab initio calculations the planar-tetrahedral energy difference in a variety of molecules, This has culminated in the discovery of relatively simple derivatives of methane that are indicated to prefer planar over tetrahedral geometries.

Computational Method

Several levels of sophistication were employed to determine the planar-tetrahedral energy differences. Most of the work was carried out using Hartree-Fock theory. For singlet states the spin-restricted form (RHF) ${ }^{15 a}$ involving doubly occupied molecular orbitals was used but triplet states were handled by the spin-unrestricted version. ${ }^{15 \mathrm{~b}}$ Initially the minimal STO-3G basis set ${ }^{14}$ was used in conjunction with standard geometries. ${ }^{16}$ Geometry optimization at the RHF/STO-3G level (or UHF/STO-3G for triplets) was then carried out, according to procedures described previously, ${ }^{17}$ on the smaller molecules and on those which were indicated to have small planar distortion energies. Calculated structures are given in Table III. Single calculations at the split valence RHF/4-31G or UHF/4-31G levels ${ }^{18}$ were then performed on the STO-3G minimized geometries. Total energies at these three levels are reported in Table IV. As can be seen from Tables V-VII, both geometry optimization and extension of the basis set uniformly reduce the energy differences. This arises since the "standard" models are appropriate for tetrahedral geometries but less so for planar structures largely because of significant π bonding or π antibonding between the substituent and the planar carbon atom; geometry optimization thus tends to lower the energy of the planar forms to a greater extent than the tetrahedral, Furthermore, since the planar carbon atoms have both σ and π bonds, they should benefit more from the increased flexibility

Table I. Calculated Energy Difference for Planar ($D_{4 h}$) vs. Tetrahedral (T_{d}) Singlet Methane Using Several Molecular Orbital Methods (kcal/mol)

ΔE	Method or basis set	Ref
127	EHT	4 b
187	CNDO	4 b
95	PNDO	5 b
120	MINDO/3	a
250	Minimal STO	$5 \mathrm{a}, \mathrm{d}$
240	RHF/STO-3G	$5 \mathrm{c}, 6 \mathrm{~b}$
168	RHF/4-31G	$5 \mathrm{c}, 6 \mathrm{~b}$
165	RHF/6-31G	6 b
171	RHF/6-31G	$6 \mathrm{~b}, b$
166	RHF/6-31G**	$6 \mathrm{~b}, b$
160	Double ζ	6 a
	with polarization	
157	RMP2/6-31G**	6
150	RHF/6-31G	

${ }^{a}$ E. D. Jemmis, unpublished. ${ }^{b}$ This work.

Table II. Semiempirical Calculations of Planar-Tetrahedral Energy Differences ($\mathrm{kcal} / \mathrm{mol}$)

Molecule	Method	ΔE
-	EHT	$97{ }^{\text {a }}$
\square	EHT	$97 b$
$\mathrm{C}(\mathrm{CN})_{4}$	EHT	79 b
$\because<_{\mathrm{H}}^{\mathrm{H}}$	EHT	$67 b$
$\mathrm{C}\left(\mathrm{SiH}_{3}\right)_{4}$	EHT	$67 b$
$\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$	EHT	$42^{\text {b }}$
Θ	EHT	25b
Θ	MINDO/2	19 c
		22^{d}

${ }^{a}$ Reference $9 . b$ Reference $4 \mathrm{~b} . c$ Reference $12 \mathrm{a} .{ }^{d}$ Reference 12 b .
of the split valence basis set than do the tetrahedral geometries.

To confirm the reliability of these results, more rigorous studies were made in two cases. Methane has been treated most extensively. Reoptimization of the structure using the RHF/6-31G** ${ }^{19}$ level (which contains d-type polarization functions on carbon) yields a value for the barrier to planarity ($171 \mathrm{kcal} / \mathrm{mol}$) in close agreement with the RHF/4-31G result ($168 \mathrm{kcal} / \mathrm{mol}$) and a closely similar bond length. ${ }^{20}$ Further extension of the basis set to include p functions on hydrogen ($\mathrm{RHF} / 6-31 \mathrm{G}^{* *}$) yields a value of $166 \mathrm{kcal} / \mathrm{mol}$ for the inversion barrier. Similarly a single calculation was performed at the RHF/6-31G* level for $\mathrm{CH}_{2} \mathrm{Li}_{2}$ at the STO-3G geometry. ${ }^{20}$ The RHF/6-31G* barrier to inversion of $8 \mathrm{kcal} / \mathrm{mol}$ differs by only 2 kcal from the RHF/4-31G value, 10 kcal . A final check of the calculated structures was made by carrying out a partial geometry optimization of methyllithium (both $C_{3 v}$ and $C_{2 v}$) using the extended RHF/4-31G level. This was done to ensure that the minimal STO-3G basis does not overestimate the role of the lithium 2 p functions. Reoptimization of the C_{30} structure resulted in an improvement in the RHF/4-31G total energy (-45.95986 au) of only $0.2 \mathrm{kcal} /$ mol while the C-Li distance shortened $0.02 \AA$ (2.008 to 1.990 \AA) and the $\angle \mathrm{HCLi}$ angle changed 1.2° (112.6 to 111.4°). Reoptimization of the planar form gave a modestly larger lowering of $4.0 \mathrm{kcal} / \mathrm{mol}$ in the total energy $(-46.89830 \mathrm{au}$, RHF/4-31G) but a larger change in $r(\mathrm{C}-\mathrm{Li})$ (from 1.727 to $1.899 \AA$); $\angle \mathrm{HCLi}$ widens only slightly from 64.5 to 64.8°.

Similarly, RHF/4-31G reoptimization of tetrahedral $\mathrm{CH}_{2} \mathrm{Li}_{2}$ resulted in an improvement in the total energy (-53.77521 au) of only $0.4 \mathrm{kcal} / \mathrm{mol}$ and changes in the C-Li distance (1.924 to $1.966 \AA$) and LiCLi angle (119.8 to 115.0°) of $0.042 \AA$ and 4.8°, respectively. Reoptimization of the planar form gave an energy decrease of $2.7 \mathrm{kcal} / \mathrm{mol}(-53.76231 \mathrm{au}$, RHF/4$31 \mathrm{G})$, and an increase in the bond length (1.744 to $1.838 \AA$) of $0.094 \AA$ and in the LiCLi angle (97.8 to 98.9°) of 1.1°. Based on these results, it seems that the $4-31 \mathrm{G}$ values listed in Tables V-VII are upper limits lying only a few kilocalories above the Hartree-Fock result.

The effect of electron correlation on the methane inversion barrier also was examined using restricted Møller-Plesset second-order perturbation theory ${ }^{21}$ applied to the $6-31 \mathrm{G}^{* *}$ wave function (this is designated RMP2/6-31G**). This method showed that inclusion of correlation energy led to a further lowering in the planar inversion barrier by $9 \mathrm{kcal} / \mathrm{mol}$, from 166 to $157 \mathrm{kcal} / \mathrm{mol}$ (Table I).

An additional question is whether the electronic configuration depicted in I is truly the ground state. To test this the pair of electrons in the p orbital of planar methane was removed and placed in the electron deficient σ system ($\mathrm{b}_{1 \mathrm{~g}}$ orbital). This results in an increase in the energy by 88 kcal (RHF/6-31G*) and abnormally long bond lengths of 1,237 \AA. This result might not have been expected. Isoelectronic $\mathrm{BH}_{4}{ }^{-}$and valence isoelectronic SiH_{4} prefer a vacant p orbital in their singlet planar ground states. ${ }^{22}$ The highest occupied $b_{1 g}$ orbital is then of d symmetry. The problem of whether the ground states are singlet or triplet is considered below.

Results and Discussion

Three effects should lower the planar distortion energy. Planar tetracoordinate carbon should be stabilized preferentially (1) by delocalizing the lone pair by π conjugation, ${ }^{4 b}$ (2) by providing more electron density to carbon by σ donation, ${ }^{4 \mathrm{~b}}$ and (3) by enforced reduction of the angle around the planar carbon atom by means of small rings.

Monosubstituted Methanes

Consider first the effect of a single substituent (Table V). Because of lone pair repulsion and high electronegativity, fluorine raises the planar-tetrahedral energy difference. On the other hand, the electropositive substituents, $\mathrm{BH}_{2}, \mathrm{BeH}$, and especially Li , lower the energy difference dramatically due to the simultaneous operation of σ-donating and π-accepting effects. Interestingly, the cyano group, a good π acceptor but also a good σ acceptor, is not particularly favorable.

Comparisons of all planar (e.g., VIIa) and perpendicular (e.g., VIIb) forms allow an assessment of the relative impor-

tance of σ vs. π effects with substituents such as $\mathrm{BH}_{2}, \mathrm{CH}_{2}{ }^{+}$, and NH_{2}. Delocalization of the carbon lone pair into the boron p orbital is precluded in perpendicular $\mathrm{CH}_{3} \mathrm{BH}_{2}$ (VIIb) resulting in an increase in the energy of the planar form by 26 $\mathrm{kcal} / \mathrm{mol}(\mathrm{RHF} / 4-31 \mathrm{G})$. This is a measure of the π effect. If BH_{2} is replaced by isoelectronic $\mathrm{CH}_{2}+$ the effect is even more dramatic, $115 \mathrm{kcal} / \mathrm{mol}$ ($\mathrm{RHF} / \mathrm{STO}-3 \mathrm{G}$). In the perpendicular forms (e.g., VIIb) only the σ effect should be operative (along with a modest amount of hyperconjugation), and the reduction of the planar-tetrahedral difference is $36 \mathrm{kcal} / \mathrm{mol}$ for a BH_{2} substituent. Evidently the σ and π effects are of comparable significance in the influence of BH_{2} on the pla-nar-tetrahedral energy difference. Similarly, rotation of NH_{2}
in $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (VIIIa,b) can eliminate the unfavorable $\mathrm{C}_{\pi}-\mathrm{N}$ (lone pair) effect thereby lowering the planar distortion energy by $16 \mathrm{kcal} / \mathrm{mol}$ (RHF/4-31G),

The calculated geometries (Table III) provide further insight into the electronic structure of the planar arrangements. Electropositive substituents which stabilize the planar form appear to be bridging a planar carbanion. Thus, in $\mathrm{CH}_{3} \mathrm{Li}$ (IX) $\angle \mathrm{H}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}}$ is 115°, nearly the ideal 120° value, Destabilizing ligands such as fluorine (X) produce an opposite distortion

IX

X
$\left(\angle \mathrm{H}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}}\right.$ is 63.3° in X$)$; in these cases, H_{b} assumes the role of bridging ligand, Overlap populations indicate significant bonding between Li and H_{a} in IX and between H_{a} and H_{b} in X.

Polysubstituted Methanes

If one substituent lowers the distortion energy substantially, then two or more such substituents should be better, Although one does not normally think of disubstituted methanes as having cis and trans forms, this, of course, is possible if planar structures are adopted. ${ }^{23}$ As illustrated in Table VI, if the substituents in question are metals, the cis planar isomers appear to be about $30 \mathrm{kcal} / \mathrm{mol}$ more stable than the trans. The electronic structure of trans $-\mathrm{CH}_{2} \mathrm{Li}_{2}$, with two π electrons in a linear three-center orbital (XI), is reminiscent of the allyl cation. The cis form, XII, is even better; the two π electrons

XII

XIII
are delocalized in a cyclic arrangement, isoconjugate with the cyclopropenium ion (XIII). XII is "homoaromatic" in the sense that a π bond but not a σ bond exists between the two lithium atoms (cf. Figure 2). This is revealed by the $\mathrm{Li} \cdots \mathrm{Li}$ Mulliken overlap populations which are repulsive (-0.12) for the σ electrons, but bonding $(+0.18)$ for the π. The $97.7^{\circ} \mathrm{Li}-$ $\mathrm{C}-\mathrm{Li}$ bond angle in XII also indicates a balance between the attractive π and the repulsive $\sigma \mathrm{Li} \cdots \mathrm{Li}$ effects. The $\mathrm{C}-\mathrm{Li}$ bond lengths in $\mathrm{CH}_{2} \mathrm{Li}_{2}$ decrease going from the tetrahedral ${ }^{2}$ (1.924 \AA) to the trans planar $(1.807 \AA)$ to the cis planar $(1.744 \AA)$ arrangements.

The third lithium atom in CHLi_{3} produces a further, but modest, lowering of the tetrahedral-planar energy difference. The RHF/STO-3G minimized structure of the planar form reveals an even larger widening of the LiCLi angle to 101.7°, Because of geometric constraints, simultaneous angle enlargement of all LiCLi angles from 90° is impossible in planar CLi_{4}. Evidently steric (repulsive σ) effects dominate whatever further favorable influences are produced by substitution of the fourth lithium atom, and the planar-tetrahedral energy

Table III. Calculated Geometries (RHF/STO-3G) of Tetrahedral ${ }^{2}$ and Planar Structures ${ }^{a}$

Table III (Continued)

Molecule	Symmetry and structure	Optimized parameter	Molecule	Symmetry and structure	Optimized parameter
trans $\mathrm{CH}_{2} \mathrm{Na}_{2}$	$D_{2} h$	$r(\mathrm{C}-\mathrm{Na})=2.012$ $r(\mathrm{C}-\mathrm{H})=1.036$	Diboracyclopropane (XV)	$C_{2 v}$ planar	$r(\mathrm{C}-\mathrm{B})=1.514$
		$r(\mathrm{C}-\mathrm{H})=1.036$			$r(\mathrm{C}-\mathrm{H})=1.085$
cis. $\mathrm{CLi}_{2} \mathrm{~F}_{2}$	$C_{2 \nu}$ planar	$r(\mathrm{C}-\mathrm{F})=1.401$			$\angle \mathrm{HCH}=101.3$
		$r(\mathrm{C}-\mathrm{Li})=1.695$			$\angle B C B=57.5$
		$\angle \mathrm{FCF}=99.50$	Diboracyclopropane (XV)	$-C_{2 v}$ tetrahedral	$r(\mathrm{C}-\mathrm{B})=1.540$
		$\angle \mathrm{LiCLi}=117.1$			$r(\mathrm{C}-\mathrm{H})=1.082$
$\mathrm{CLi}_{2} \mathrm{~F}_{2}$	$C_{2 \nu}$ tetrahedral	$r(\mathrm{C}-\mathrm{F})=1.380$			$\angle \mathrm{HCH}=110.53$
		$r(\mathrm{C}-\mathrm{Li})=2.118$			$\angle B C B=63.1$
		$\angle \mathrm{FCF}=105.4$	2,3,4,5-Tetraboraspiropentane (XVI)	$C_{2 \nu}$ planar	$r(\mathrm{C}-\mathrm{B})=1.527$
		$\angle \mathrm{LiCLi}=114.6$			$\angle \mathrm{BCB}=60.2$
Cyclopropene	$C_{2 v}$ planar	$r\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)=1.693$	2,3,4,5-Tetrabora-	$C_{2 v}$ tetrahedral	$r(C-B)=1.531$
		$r\left(\mathrm{C}_{3} \mathrm{H}\right)=1.058$	spiropentane (XVI)		$\angle B C B=61.2$
		$\angle C_{1} C_{3} C_{2}=43.0$ $\angle H C=124.4$	3,3-Dilithiocyclopropene	$C_{2} v$ tetrahedral	$r\left(\mathrm{C}_{3}-\mathrm{Li}\right)=2.092$
		$\angle \mathrm{HC}_{3} \mathrm{H}=124.4$ $r\left(\mathrm{C}_{1}-\mathrm{C}\right)=1542$			$r\left(\mathrm{C}_{3}-\mathrm{C}_{1}\right)=1.498$
Cy clopropane	$C_{2 v}$ planar	$r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)=1.542$ $r\left(\mathrm{C}_{1}-\mathrm{H}\right)=1.063$			$\angle \mathrm{LiCLi}=102.6$
		$r\left(\mathrm{C}_{1}-\mathrm{H}\right)=1,063$			$\angle C_{1} C_{3} C_{2}=50.8$
		$\angle C_{2} C_{1} C_{3}=54.4$	1,1-Dilithiocyclopropane (XVIIc)	$C_{2 \nu}$ planar	$r(\mathrm{C}-\mathrm{Li})=1.733$
		$\angle \mathrm{HC}_{1} \mathrm{H}=110.8$			$r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)=1.530$
Lithio cy clopropane	C_{S}	$r\left(\mathrm{C}_{1}-\mathrm{Li}\right)=1.702$			$\angle \mathrm{LiCLi}=100.02$
		$r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)=1.496$ $r\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)=r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$			$\angle C_{2} \mathrm{C}_{1} \mathrm{C}_{3}=58.0$
		$r\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)=r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$	1,1-Dilithiocyclopropane (XVIIa)	$C_{2 \nu}$ tetrahedral	$r(\mathrm{C}-\mathrm{Li})=1.952$
		$\stackrel{(\text { ass.) }}{\left(\mathrm{C}_{1} \mathrm{H}\right)} \mathrm{C}=1.068$			$r(\mathrm{C}-\mathrm{C})=1.526$
		$r\left(\mathrm{C}_{1}-\mathrm{H}\right)=1.068$			$\angle \mathrm{LiCLi}=106.5$
		$\angle C_{2} C_{1} C_{3}=60.9$			$\angle C C C=58.6$
		$\angle \mathrm{LiCH}=70.6$	3,3-Dilithio-1,2-diboracyclopropane (XIX)	$C_{2 v}$ planar	$r(\mathrm{C}-\mathrm{Li})=1.802$
		$\angle C C L i=93.3$			$r(\mathrm{C}-\mathrm{B})=1.485$
Lithiocy clopropane	C_{S} tetrahedral	$r\left(\mathrm{C}_{1}-\mathrm{Li}\right)=1.961$			$\angle \mathrm{LiCLi}=129.5$
		$r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)=1.513$			$\angle B C B=62.3$
		$r\left(\mathrm{C}_{1}-\mathrm{H}\right)=1.084$	3,3-Dilithio-1,2-diboracyclo-	$C_{2 \nu}$ tetrahedral	$r(\mathrm{C}-\mathrm{Li})=1.831$
		$\angle C_{2} C_{1} C_{3}=59.0$	propane (XIX)		$r(\mathrm{C}-\mathrm{B})=1.510$
		$\angle \mathrm{LiCH}=117.8$			$\angle \mathrm{LiCLi}=123.7$
		$\angle L i C_{1} C_{2}=123.9$			$\angle B C B=61.3$

a Bond lengths in angströms, angles in degrees. See structures IX and X for specification of atoms. Unlisted parameters have standard values (ref 16). Exocyclic hydrogens lie in the plane perpendicular to and bisecting the ring angle. ${ }^{b}$ Local $C_{3 \nu}$ symmetry assumed for the tetrahedral methyl group which has dihedral angle $\mathrm{H}_{\mathrm{a}} \mathrm{CCH}$ of $90^{\circ} .{ }^{c}$ UHF/STO-3G geometries for triplet states.
difference increases somewhat. This repulsive σ effect is less significant with BeH substituents, and a steady decrease in the planar-tetrahedral energy differences is noted in going from $\mathrm{CH}_{3} \mathrm{BeH}$ (Table V) to $\mathrm{C}(\mathrm{BeH})_{4}$ (Table VI).

The repulsive σ effect is revealed more dramatically in the case of $\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$. The planar $D_{4 h}$ structure, XIVa, lies 54 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than the $D_{2 h}$ structure XIVb. This

XIVa

is attributed to relief of the unfavorable interactions between hydrogen atoms. Alternatively, a "propeller" type distortion to the D_{4} structure XIVc results in an energy intermediate between those of XIVa and XIVb. Evidently, a large amount of the favorable π delocalization must be sacrificed in order to overcome the unfavorable interligand steric effects.

Some second-row substituents, Na and Cl , were examined as well (Tables V, VI, and VIII). These elements demonstrated the same trends as were observed for the first-row substituents in that sodium lowered the inversion barrier in $\mathrm{CH}_{3} \mathrm{Na}$ and $\mathrm{CH}_{2} \mathrm{Na}_{2}$ while Cl raised the barrier of $\mathrm{CH}_{2} \mathrm{LiCl}$ relative to that of $\mathrm{CH}_{3} \mathrm{Li}$. However, sodium had a much smaller stabilizing effect than lithium presumably because of the diffuseness of its 3 p orbitals. For the same reason, chlorine is not as destabilizing as fluorine since the unfavorable $\mathrm{C}_{\pi}-\mathrm{X}$ (lone pair) (X

Figure 2. Four molecular orbitals of cis-planar $\mathrm{CH}_{2} \mathrm{Li}_{2}\left(\mathrm{C}_{2 v}\right)$. The HOMO ($1 \mathrm{~b}_{1}$) of the singlet shows the three-center, two-electron "homoaromatic" π bonding. The $5 \mathrm{a}_{1}$ MO is the LUMO in the singlet, but the HOMO in the triplet. Because of the diffuseness of the p orbitals on lithium, a contour of 0.06 au was employed.

Table IV. Total Energies (au) of Molecules in Tetrahedral ${ }^{2}$ and Planar Arrangements

Molecule	RHF/STO-3G Standard geometry ${ }^{\text {a }}$		STO-3G optimized geometry			
			RHF/STO-3G		RHF/4-31G	
	Tetrahedral	Planar	Tetrahedral	Planar	Tetrahedral	Planar
CH_{4} (I)	-39.726 86	-39.344 30	-39.726 86	-39,344 41	-40,139 76	-39,871 47
$\mathrm{CH}_{3} \mathrm{~F}(\mathrm{X})$	-137.16836^{d}	-136,699 47	$-137.16906 c$	-136.747 31	$-138,8566^{6}{ }^{\text {c }}$	-138.514 99
$\mathrm{CH}_{3} \mathrm{OH}$ (OH planar)	$-113.54502{ }^{\text {d }}$	-113.087 19	$-113.54598{ }^{\text {c }}$	-113.126 43	$-114.8655^{5} \mathrm{c}$	-114.534 29
$\mathrm{CH}_{3} \mathrm{OH}$ (OH perpendicular)		-113.107 74		-113.148 61		-114.546 03
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ (VIIIA)	-94.030 $43{ }^{\text {d }}$	-93.581 69	-94.032 $86{ }^{c}$	- 92.61996	-95,064 $98{ }^{\text {c }}$	- 94.74887
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ (VIIIB)		-93.600 24		-93.63755		- 94.77474
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	-78.30618^{d}	-77.909 53	$-78.30618{ }^{c}$	-77.921 26	-79.115 ${ }^{82}{ }^{\text {c }}$	-78.83769
$\mathrm{CH}_{3} \mathrm{BH}_{2}$ (VIIA)	-64.666 50	-64.407 08	-64.667 69e	-64.421 52	-65,347 72	-65.179 65
$\mathrm{CH}_{3} \mathrm{BH}_{2}^{2}$ (VIIB)		-64.328 26		-64.381 03		-65.138 08
$\mathrm{CH}_{3} \mathrm{BeH}$	-54.152 24	-53.929 26	-54.153 22 f	-53.99363	-54,733 49	-54.60791
$\mathrm{CH}_{3} \mathrm{Li}$ (IX)	-46.419 99	-46.247 88	-46.421 59 f	-46.338 05	-46.959 62	-46.891 92
$\mathrm{CH}_{3} \mathrm{CN}$	-130.270 79	-129.902 23	-130.271 56	-129.925 61	-131.727 12	-131.475 02
$\mathrm{CH}_{3} \mathrm{Na}$	-198.937 38	-198.732 98	-198,940 68	-198.819 00	i	i
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}\left(\mathrm{CH}_{2}\right.$ planar)	-77.405 21	$-77,20426$	-77.408 06	-77.23945	-78,194 96	-77.07634
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}\left(\mathrm{CH}_{2}\right.$ perpendicular)		-77.021 29		-77.053 93		-77.925 46
cis- $\mathrm{CH}_{2}(\mathrm{BeH})_{2}$	-68.592 16	-68.476 71	-68.592 99	-68.503 75	-69.338 31	-69.266 91
trans- $\mathrm{CH}_{2}(\mathrm{BeH})_{2}$		-68.431 08		-68.442 52		-69.226 69
$\mathrm{CH}(\mathrm{BeH})_{3}$	-83.050 72	-82.973 85	-83.053 18	-82.988 52		
$\mathrm{C}(\mathrm{BeH})_{4}$	-97.526 43	b	-97.531 98	-97.480 43		
cis $\cdot \mathrm{CH}_{2} \mathrm{Li}_{2}$ (XII)	-53.131 15	-53.074 59	-53.134 07	-53.10751	-53,774 54	-53.758 05
trans-CH2 Li_{2} (XI)		-53.030 64		-53.048 69		-53,698 81
cis- $\mathrm{CH}_{2} \mathrm{Li}_{2}$ triplet (XXI)			-53.152 50	-53.13766	-53.799 94	-53.795 31
CHLi_{3}	b	b	-59.88590	-59.87021	-60.608 650	-60.596 820
CLi_{4}	b	b	-66.66668	-66.631 93	-67.465 130	-67,438 90°
cis- $\mathrm{CH}_{2} \mathrm{Na}_{2}$	-358.061 10	-357.95814	-358.063 77	-357.978 44	+	,
trans. $\mathrm{CH}_{2} \mathrm{Na}_{2}$		-357.88318		-357.891 73	i	i
cis- $\mathrm{CHLi}_{2} \mathrm{CN}$	-143.704. 51	-143.65163				
trans-CHLi ${ }_{2} \mathrm{CN}$		-143.60393				
cis. $\mathrm{CLi}_{2} \mathrm{~F}_{2}$ (XX)	-248.032 79	-248.020 57	-248.058 01	-248.077 75	,	1
Cyclopropene	-114.393 25	-114.03526	-114.401 168	-114.088 35	-115,641 688	-115.401 58
Cyclopropane	-115.660 37	-115,344 76	$-155,666168$	-115.363 47	$-116.88350 \mathrm{~g}$	-116.659 23
Lithiocyclopropane	-122.356 56	-122.204 65	-122.364 59	-122.261 31	-123.69898	-123.616 38
Diboracyclopropane (XV)	-88.342 75	-88.260 18	-88.344 33	-88.289 85	-89.312 84	-89.28181
2,3,4,5-Tetraboraspiropentane (XVI)	-137.020 04	-136,993 13	-137.032 13	-137.015 75	-138.55182	-138.541 38
1,1-Dilithiocyclopropane pane (XVII)	-129.057 43	-129,037 51	-129,059 86	-129.071 26	b	b
3,3-Dilithiocyclopropene (XVIII)	-127.764 27	-127.777 52	-127.797 27	-127.812 11		
3,3-Dilithio-1,2-diboracy- clopropane (XIX)	-101.876 82	-101.885 66	-101.888 69	-101.909 87	-103.061 93	-103.089 43
Cyclopentadiene (VI)	-190.446 53j	-190.145 93 ${ }^{j}$				
Phenonium ion (II)	-304.23142^{k}	-304.09658^{k}				
$\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$ (XIVA)	-139.49719	-139.277 62				
$\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$ (XIVB)		-139.364 17				
$\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$ (XIVC)		$-139.32389 n$				
Spiropentane	-191.59220	-191.326 40				
$\mathrm{CH}_{2} \mathrm{LiF}$	-143.863 07	-143.644 17				
$\mathrm{CH}_{2} \mathrm{LiCl}$	-500.429 36	-500.22277				
1-Lithio-1-fluorocyclopropane	-219.817 72	-219.601 92				
$\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$	-228.25316^{h}	-228.034 99h				
$\stackrel{C}{C} \chi_{\mathrm{I}, \mathrm{i}}^{\mathrm{H}}$	-235.063 00^{k}	-234.988 86^{k}				
${ }_{¢} \chi^{\mathrm{Li}}$	-242.16280^{k}	-241.82862^{k}				
\bigcirc	-302.963 09l	-302.860 70^{l}				
${ }^{\mathrm{H}}$	-197.044 75j	-197.168 61m				
$>^{\text {Li }}$	-203.877 $03 j$	$-203.90288{ }^{\text {m }}$				

[^0]Table V. Calculated Planar-Tetrahedral ${ }^{2}$ Energy Differences ($\mathrm{kcal} / \mathrm{mol}$) for Monosubstituted Methanes (RHF)

Molecule	Basis set		
	STO-3G (standard geometry) ${ }^{a}$	(STO-3G optimized geometry)	
CH_{4} (I)	240	240	168
$\mathrm{CH}_{3} \mathrm{~F}$ (X)	294	265	215
$\mathrm{CH}_{3} \mathrm{OH}$ (OH planar)	287	263	208
$\mathrm{CH}_{3} \mathrm{OH}$ (OH perpendicular)	274	249	200
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ (VIIIa)	281	259	198
$\mathrm{CH}_{3} \mathrm{NH}_{2}$ (VIIIb)	269	248	182
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	250	243	175
$\mathrm{CH}_{3} \mathrm{BH}_{2}$ (VIIa)	164	155	106
$\mathrm{CH}_{3} \mathrm{BH}_{2}$ (VIIb)	213	180	132
$\mathrm{CH}_{3} \mathrm{BeH}$	140	100	79
$\mathrm{CH}_{3} \mathrm{Li}$ (IX)	108	52	$42^{\text {b }}$
$\mathrm{CH}_{3} \mathrm{CN}$	231	217	158
$\mathrm{CH}_{3} \mathrm{Na}$	124	76	${ }^{\text {c }}$
$\mathrm{CH}_{3} \mathrm{CH}_{2}+\left(\mathrm{CH}_{2}\right.$ coplanar)	128	106	74
$\underset{\text { dicular) }}{\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}\left(\mathrm{CH}_{2} \text { perpen- }\right.}$	243	222	169

a Reference $16 .{ }^{b}$ UHF/4-31G optimized structures have a difference of 38 kcal (see text). $c 44-31 \mathrm{G}$ basis set not yet available for Na .

Table VI. Calculated Planar-Tetrahedral ${ }^{2}$ Energy Differences ($\mathrm{kcal} / \mathrm{mol}$) for Polysubstituted Methanes (RHF)

Molecule	Basis set		
	$\begin{aligned} & \text { STO-3G } \\ & \text { (standard } \\ & \text { geometry) } \\ & \hline \end{aligned}$	(STO-3G optimized geometry)	
cis $-\mathrm{CH}_{2}(\mathrm{BeH})_{2}$	72	56	45
trans $-\mathrm{CH}_{2}(\mathrm{BeH})_{2}$	101	94	70
$\mathrm{CH}(\mathrm{BeH})_{3}$	48	41	
$\mathrm{C}(\mathrm{BeH})_{4}$	c	32	
cis- $\mathrm{CH}_{2} \mathrm{Li}_{2}$ (XII)	35	17	$10^{\text {b }}$
trans- $\mathrm{CH}_{2} \mathrm{Li}_{2}$ (XI)	63	54	47
CHLi_{3}	c	10	7
CLi_{4}	c	22	6
cis- $\mathrm{CH}_{2} \mathrm{Na}_{2}$	65	59	
trans- $\mathrm{CH}_{2} \mathrm{Na}_{2}$	112	108	
cis- $\mathrm{CHLi}_{2} \mathrm{CN}$	33		
trans $-\mathrm{CHLi}_{2} \mathrm{CN}$	63		
$\mathrm{CLi}_{2} \mathrm{~F}_{2}(\mathrm{XX})$	8	-25	c

$a_{\text {Reference }} 16 . b_{8} \mathrm{kcal} / \mathrm{mol}$ both at $6-31 \mathrm{G}$ * (STO-3G geometries) and at $4-31 \mathrm{G}$ ($4-31 \mathrm{G}$ geometries) (see text). ${ }^{c}$ Convergence on the density matrix was not achieved.
$=\mathrm{F}, \mathrm{Cl})$ interaction is not as bad for the more diffuse chlorine 3 p lone pair.

The high barriers to planarity of the carbenoids $\mathrm{CH}_{2} \mathrm{LiF}$ and 1-lithio-1-fluorocyclopropane (Table VIII) support the recent findings of Hahnfield and Burton ${ }^{24}$ on the stereochemical integrity of similar vinyl carbenoids. Contrary to an earlier report, ${ }^{25}$ they found that these molecules did not isomerize in solution. Presumably, one possible mode of isomerization might have been a simple rotation of the LiCF group but this mechanism of rearrangement seems unlikely on the basis of our results.

Utilization of Small Rings

Three-membered rings overcome the steric problem. One can take advantage of such rings in two ways. The electropositive atoms can be incorporated into the ring structure, or they can be introduced as external substituents. Thus, XV meets the usual criteria for aromaticity in its planar arrangement, but the tetrahedral geometry is still preferred by 20 $\mathrm{kcal} / \mathrm{mol}$ (RHF/4-31G). The same is true for XVI, a spiropentane analogue, but by only $6 \mathrm{kcal} / \mathrm{mol}$ (RHF/4-31G).

Table VII. Calculated Planar-Tetrahedral ${ }^{2}$ Energy Differences ($\mathrm{kcal} / \mathrm{mol}$) for Three-Membered Ring Compounds (RHF)

Molecule	Basis set		
	$\begin{gathered} \text { STO-3G } \\ \text { (standard } \\ \text { geometry) } \\ \hline \end{gathered}$	STO-3G (STO-3G geo	4-31G imized y)
Cyclopropene	225	196	151
Cyclopropane ${ }^{\text {c }}$	198	190	141
Lithiocyclopropane	95	65	52
Diboracyclopropane (XV)	52	34	20
2,3,4,5-Tetraboraspiropentane (XVI)	17	10	6
1,1-Dilithiocy clopropane (XVII) ${ }^{c}$	13	-7	b
3,3-Dilithiocy clopropene (XVIII)	-8	$(-10)^{d}$	b
$\begin{aligned} & \text { 3,3-Dilithio-1,2-diboracy- } \\ & \text { clopropane (XIX) } \end{aligned}$	-6	-13	-17
${ }^{a}$ Reference 16 ; for planar molecules the standard bond angle is 90° except when a ring is present. In these cases the remaining substituents trisect the external angle. ${ }^{b}$ Convergence on the density matrix was not achieved. ${ }^{c}$ One carbon planar. ${ }^{d}$ Incomplete optimization.			

Table VIII. Calculated Planar-Tetrahedral ${ }^{2}$ Energy Differences (RHF/STO-3G, kcal/mol) for Some Larger Systems at Standard Geometries

Molecule	Energy
Cyclopentadiene (VI)	189
Phenonium ion (II)	85
$\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$ (XIVa)	84
$\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$ (XIVb)	138
$\mathrm{C}\left(\mathrm{BH}_{2}\right)_{4}$ (XIVc)	113
Spiropentane ${ }^{\text {b }}$	167
$\mathrm{CH}_{2} \mathrm{LiF}$	137
$\mathrm{CH}_{2} \mathrm{LiCl}$	130
1-Lithio-1-fluorocyclopropane	135
$\stackrel{+}{+}{ }^{\mathrm{H}}$	137
	61
	21
	102
	77
	16

a See Table VII, footnote a, and Table III for the geo metries of individual molecules. ${ }^{b}$ Central carbon planar.

1,1-Dilithiocyclopropane (XVII) achieves our objective; the planar form is calculated even at the RHF/STO-3G level to be the energy minimum! 3,3-Dilithiocyclopropene (XVIII), the rather exotic compound XIX, and the bis-carbenoid $\mathrm{CLi}_{2} \mathrm{~F}_{2}(\mathrm{XX})$ are even more favorable in their preference for planar geometries.

XV

XVIII

XVI

XIX

Triplet States

An obvious additional question, emphasized by Murrell, ${ }^{5 \mathrm{e}}$ is the possibility of a triplet ground state. UHF/6-31G** calculations by Shavitt et al. ${ }^{6 b}$ indicate that triplet planar methane has an energy $2.5 \mathrm{kcal} / \mathrm{mol}$ lower than singlet planar methane. However, the problem of assessing triplet-singlet energy differences by single-determinant calculations is well known. ${ }^{26}$ The stability of states of higher spin multiplicity is overestimated. For example, the stability of the triplet state of CH_{2} is overestimated by $14 \pm 6 \mathrm{kcal} / \mathrm{mol}^{27}$ at the Har-tree-Fock level. Therefore, it is not surprising that when configuration interaction is employed singlet methane becomes the more stable planar configuration by $4 \mathrm{kcal} / \mathrm{mol}^{6 \mathrm{~b}}$ We have calculated the singlet-triplet difference for $\mathrm{CH}_{2} \mathrm{Li}_{2}$. The total energy of the planar triplet ($\mathrm{UHF} / 4-31 \mathrm{G}$) lies $23.4 \mathrm{kcal} / \mathrm{mol}$ below that of the planar singlet (RHF/4-31G). The tetrahedral triplet (UHF/4-31G) is only $15.9 \mathrm{kcal} / \mathrm{mol}$ below the tetrahedral singlet (RHF/4-31G), The planar distortion energy of the triplet is then only $2.9 \mathrm{kcal} / \mathrm{mol}(\mathrm{UHF} / 4-31 \mathrm{G})$. In view of the overestimation of the stability of triplet methylene, it is difficult to assign the ground state configuration of $\mathrm{CH}_{2} \mathrm{Li}_{2}$ but the two states should be close in energy.
The structures of the two triplets, XXIa,b, show marked differences from the corresponding singlet geometries, For both

XXIa

XXIb
triplets an electron is removed from a LiCLi orbital of π type (symmetry b_{1}) and placed in a $\mathrm{Li} \cdots \mathrm{Li} \sigma$ bonding orbital (symmetry a_{1}). This results in a marked reduction of the $\angle \mathrm{LiCLi}$ angles (to ca. 69° in both XXIa and XXIb); threemembered rings are formed. The $\mathrm{C}-\mathrm{Li}$ bond lengthenings (Table III) reflect the removal of an electron from the π bonding orbital. The presence of low-lying triplet configurations may contribute to the tendency of polylithium compounds to associate, ${ }^{28}$ but nothing is known about this at present.

Geometries of Lower Symmetry

There remains the problem of determining the most stable geometry. Orientations other than T_{d} and $D_{4 h}$ are certainly possible for methane as are corresponding structures for substituted methanes. Indeed, Shavitt's work ${ }^{6 \mathrm{~b}}$ indicates that a square-pyramidal ($C_{4 v}$) geometry is preferred over square planar $\left(D_{4 h}\right)$ for methane suggesting that molecules such as cis,cis,cis,cis- fenestrane ${ }^{10 \mathrm{~b}}$ would undergo a similar distortion as do several known carboranes. ${ }^{29}$ However, complete relaxation of all symmetry constraints would result in a prohibitive computational burden and was not generally pursued here. In two cases we did carry out a somewhat more complete search (at the RHF/STO-3G level) to probe the possibility that a structure intermediate between the "tetrahedral" $C_{2 c}$ and planar $C_{2 v}$ structures might be even lower in energy. For the case of $\mathrm{CF}_{2} \mathrm{Li}_{2}$, a form of C_{2} symmetry, obtained by rotating the FCF plane in the cis planar form by 20° about the angle bisector, was found to lie $0.7 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the planar structure. In contrast, a 5° rotation of the CLi_{2} group in planar 1,1-dilithiocyclopropane (XVIIc) resulted in a higher energy.

Two promising systems, 5 -lithiocyclopentadiene and 5,5dilithiocyclopentadiene (XXIIa and XXIIb), received no further attention since calculations at fixed geometries ${ }^{30}$ showed that these molecules prefer the unrelated bridged structure XXIIa,b.

XXIII, $\mathrm{X}=\mathrm{H}$ b, $\mathrm{X}=\mathrm{Li}$

Proposed Experimental Systems for Study

After a century of tetrahedral carbon, these results are startling and invite experimental verification. For molecules in which the tetrahedral structures are more stable, but the tetrahedral-planar energy difference is low, stereomutation should be observable. ${ }^{31}$ Appropriately substituted phenonium ions are a possibility, but our ab initio results on II (Table VIII), although only with standard geometries, do not confirm the low MINDO/ 2 distortion energies ${ }^{12,32}$ and preliminary experimental work failed to detect planar inversion. ${ }^{9}$ A variety of alkyllithium compounds, including neohexyllithium ${ }^{33}$ and the cyclopropyllithium derivative (XXIII), ${ }^{34}$ are known to

XXIII

XIV
stereomutate in solution. ${ }^{26}$ A dissociation-recombination mechanism involving ions or ion pairs has generally been assumed. ${ }^{33}$ Electron donor solvents may well favor this mechanism, but we suggest that planar inversion should receive serious consideration as an alternative in nonpolar solvents especially since the distortion energy for methyllithium is calculated to be only $38 \mathrm{kcal} / \mathrm{mol}$ (RHF/4-31G optimized structures). Furthermore the structures we have calculated for planar alkyllithium compounds resemble trigonal carbanions bridged by lithium cations with significant bonding, not merely electrostatic attraction, between lithium and carbon as well as between lithium and the other adjacent atoms, especially hydrogen. ${ }^{35}$ Stereomutation of alkyllithium derivatives may also occur in associated species, but we have not yet considered such possibilities computationally.

Evidence for the existence of many di- and polylithium compounds, including $\mathrm{CH}_{2} \mathrm{Li}_{2},{ }^{36} \mathrm{CLi}_{4},{ }^{37}$ and the 1,1 -dilithiocyclopropane derivative (XXIV), ${ }^{38}$ has been reported, ${ }^{26,39}$ but their structures are not known experimentally. Our results indicate that molecules of this type, at least as isolated species in the gas phase, are likely to be planar or to have low planar distortion energies. Although the experimental verification of these predictions may be complicated by the tendency of lithium compounds to be associated or to be solvated in electron-donor solvents, ${ }^{26}$ efforts to overcome these problems should be rewarding.

Acknowledgments. This work was supported by NSF Grants GP-29078X (Princeton) and GP-9338 (Carnegie-Mellon) and by the donation of computer time by Princeton University and by the University of Munich, where much of this work was carried out during the tenure of an award of the Alexander von Humboldt Foudation (to P.v.R.S.). We thank J. Stephen Binkley and Edward M. Engler for their contributions to this project and Dieter Poppinger for the use of an SCF convergence program. In addition we thank R. Hoffmann, R. West, D. E. Applequist, J. Liebman, K. Wiberg, W. L. Jorgensen, K. Mislow, and H. Wynberg for their helpful comments.

References and Notes

(1) (a) Presented in part at the Autumn Meeting, Chemical Society of London, Perkin Division, Leicester, September 23-26, 1974, and at the 169th National Meeting of the American Chemical Society, Philadelphia, Pa., April 1975, Abstract No. ORGN 3; (b) Princeton University, (c) present address: Erlangen-Nürnberg; (d) Carnegie-Mellon University.
(2) Exact tetrahedral geometry (T_{d} symmetry) is seldom encountered, as it is possible only when all four substituents are the same. As deviations from 109.5° bond angles are generally small, 'tetrahedral' is often employed as we do here in a loose sense to describe the preferred bonding arrangement in saturated organic molecules.
(3) (a) J. H. van't Hoff, Arch. Neerl. Sci. Exactes Nat., 445 (1874), translated in 'Classics in the Theory of Chemical Combinations', O. T. Benfey, Ed., Dover Publications, New York, N.Y., 1963; (b) J. A. LeBel, Bull. Soc. Chim. Fr., 22, 337 (1874); (c) For historical reviews see D. F. Larder, J. Chem. Educ., 44, 661 (1967); H. A. M. Snelders, ibid., 51, 2 (1974); F. G. Riddell and M. J. T. Robinson, Tetrahedron, 30, 2001 (1974); W. J. LeNoble, 'Highlights of Organic Chemistry", Marcel Dekker, New York, N.Y., 1974, pp 207 and 208 and "van't Hoff-LeBel Centennial", O. E. Ramsay, Ed., American Chemical Society Symposium Series 12, Washington, 1975.
(4) A. F. Saturno, Theor. Chem. Acta, 28, 273 (1967); (b) R. Hoffmann, R. G. Alder, and C. F. Wilcox, Jr., J. Am. Chem. Soc., 92, 4992 (1970); R. Hoffmann, Pure Appl. Chem., 28, 181 (1971); (c) B. M. Gimarc, J. Am. Chem. Soc., 93, 593 (1971), Acc. Chem. Res., 7, 384 (1974); (d) R. J. Buenker and S. D. Peyerimhoff, Chem. Rev., 74, 127 (1974); (e) G. Herzberg, "Electronic Structure of Polyatomic Molecules", 3rd ed, Van Nostrand, Princeton, N.J., 1966, p 392.
(5) (a) H. J. Monkhorst, J. Chem. Soc., Chem. Commun., 1111 (1968); (b) G. Olah and G. Klopman, Chem. Phys. Lett., 11, 604 (1971); (c) W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, J. Am. Chem. Soc., 93, 6377 (1971); (d) S. Durmaz, J. N. Murrell, and J. B. Pedlay, J. Chem. Soc., Chem. Commun., 933 (1972); (e) J. N. Murrell, J. B. Pedlay, and S. Durmaz, J. Chem. Soc., Faraday Trans. 2, 69, 1370 (1973); (f) H. Wynberg and L. A. Halshof, Tetrahedron, 30, 1775 (1974). Also see R. A. Firestone, J. Chem. Soc., Chem. Commun., 163 (1973).
(6) (a) K. B. Wiberg and G. B. Ellison, Tetrahedron, 30, 1573 (1974); K. B. Wiberg, G. B. Ellison, and J. J. Wendolski, J. Am. Chem. Soc., 98, 1212 (1976); (b) S. Palalikit, P. C. Hariharan, and I. Shavitt, personal communication from Dr. Isaiah Shavitt. (Material presented as a Contributed Paper, Fifth Canadian Theoretical Chemistry Symposium, Ottawa, June, 1974).
(7) D. M. Golden, R. Walsh, and S. W. Benson, J. Am. Chem. Soc., 87, 4053 (1965).
(8) (a) F. T. Smith, J. Chem. Phys., 29, 235 (1958); (b) Cf. R. Hoffmann, J. Am. Chem. Soc., 90, 1475 (1968). Also see K. E. Gilbert and J. E. Baldwin, ibid., 98, 1593 (1976).
(9) G. A. Olah, private communication.
(10) (a) V. Georgian and M. Saltzman, Tetrahedron Lett., 4315 (1972); (b) J. F. Liebman and A. Greenberg, Chem. Rev., 76, 311 (1976).
(11) E. H. Hahn, H. Bohm, and D. Ginsburg, Tetrahedron Lett., 507 (1973).
(12) (a) M. Shanshal, J. Chem. Soc., Perkin Trans. 2, 335 (1972); (b) W. W. Shoeller, Chem. Commun., 872 (1974).
(13) J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople, and L. Radom, J. Am. Chem. Soc., 98,3436 (1976). Isoelectronic BeH_{4} dissociates to BeH_{2} and H_{2} while BH_{4}^{+}forms a weak complex between BH_{2}^{+}and H_{2}.
(14) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 5.1, 2657 (1969). All calculations were performed using the GAUSSIAN 70 series of programs (W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople; available as Program No. 236 from the Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.) except for calculations using polarization functions that were run on programs at Carnegie-Mellon.
(15) (a) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951); (b) J. A. Pople and R. K. Nesbet, J. Chem. Phys., 22, 571 (1954).
(16) J. A. Pople and M. Gordon, J. Am. Chem. Soc., 89, 4253 (1967), and the
following additions: $\mathrm{C}-\mathrm{Li}=2.01, \mathrm{C}-\mathrm{Be}=1.69, \mathrm{C}-\mathrm{B}=1.57, \mathrm{Be}-\mathrm{H}=1.29$, $B-H=1.16$ (J. D. Dill, P. v. R. Schleyer, and J. A. Pople, J. Am. Chem. Soc., in press), and $\mathrm{C}-\mathrm{Na}=2.09$ (J. B. Collins, unpublished).
(17) M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 52, 4064 (1970).
(18) (a) R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, 724 (1971); (b) W. J. Hehre and J. A. Pople, ibid., 56, 4233 (1972); (c) J. D. Dill and J. A. Pople, ibid., 62, 2921 (1975); a 5-21G basis instead of 4-31G is used for lithium and beryllium.
(19) (a) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 28, 213 (1973); (b) J. D. Dill and J. A. Pople, d. Chem. Phys., 62, 2921 (1975).
(20) Structures and total energies: 6-31G* $\mathrm{CH}_{4}\left(T_{d}\right) r=1.084, E=-40.19517$; $\mathrm{CH}_{4}\left(D_{4 n}\right) r=1.080, E=-39.92245 ; 6-31 \mathrm{G}^{*}{ }^{*} \mathrm{CH}_{4}\left(T_{\sigma}\right) E-40.20159$; $\mathrm{CH}_{4}\left(D_{4 n}\right) E-39.93696$ (using 6-31G* bond lengths). $\mathrm{CH}_{2} \mathrm{Li}_{2}$, STO-3G geometries (Table III), E (planar) $=-53.81596, E\left(\right.$ tetrahedral ${ }^{2}$) $=$ -53.82908.
(21) (a) J. S. Binkley and J. A. Pople, Int. J. Quantum Chem., 9, 229 (1975); (b) C. Moller and M. S. Plesset, Phys. Rev., 46, 618 (1934). Total energles: UMP/6-31G** $E\left(T_{d}\right)=-40.36977, E\left(D_{4 h}\right)-40.11899$.
(22) J. B. Collins, unpublished results.
(23) Cis and trans planar isomers are common in inorganic compounds. For example, see M. C. Day, Jr., and J. Selbin, "Theoretical Inorganic Chemistry', Reinhold, New York, N.Y., 1969, Chapter 10, or F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry'', 3rd ed, Interscience, New York, N.Y., 1972, Chapter 1.
(24) J. L. Hahnfield and D. J. Burton, Tetrahedron Lett., 773 (1975).
(25) P. Tarrant, R. W. Whitfield, and R. H. Summerville, J. Fluorine Chem., 1, 31 (1971).
(26) J. F. Harrison, Acc. Chem. Res., 7, 378 (1974).
(27) C. F. Bender, H. F. Schaefer III, D. R. Franceschetti, and L. C. Allen, J. Am. Chem. Soc., 94, 6888 (1972).
(28) B. J. Wakefield, ''The Chemistry of Organolithium Compounds', Part I, Pergamon Press, New York, N.Y., 1974.
(29) T. Onak in 'Boron Hydride Chemistry', E. Muetterties, Ed., Academic Press, 1975. M. Thompson and R. Grimes, J. Am. Chem. Soc., 93, 6677 (1971).
(30) Y. Apeloig, unpublished results, cf. H. Preuss and R. Janoschek, J. Mol. Struct., 3, 423 (1969); S. Alexandratos, A. Streitwieser, Jr., and H. F. Schaefer III, J. Am. Chem. Soc., in press.
(31) Both twisting and flattening motions are symmetry allowed. ${ }^{40}$
(32) The MINDO/3 value is $28.4 \mathrm{kcal} / \mathrm{mol}$. E. D. Jemmis, unpublished results.
(33) M. Witanowski and J. D. Roberts, J. Am. Chem. Soc., 88, 737 (1966).
(34) G. Fraenkel, D. T. Dix, and M. Carlson, Tetrahedron Lett., 579 (1968).
(35) Although optimization was not carried to completion, the planar distortion energy of cyclopropyllithium (Table V) is indicated to be higher than that of methyllithium, despite the strain effect which should favor the former. Planar methyllithium benefits from having two cis hydrogens, and this should be true for neopentyllithium ${ }^{33}$ as well.
(36) K. Ziegler, K. Nagel, and M. Patheiger, Z. Anorg. Allg. Chem., 282, 345 (1955).
(37) C. Chung and R. J. Lagow, Chem. Commun., 1078 (1972); L. G. Sneddon and R. J. Lagow, lbid., 302 (1975); J. A. Morrison, C. Chung, and R. J. Lagow, J. Am. Chem. Soc., 97, 5015 (1975).
(38) D. E. Applequist and E. C. Saurborn, J. Org. Chem., 37, 1676 (1972).
(39) W. H. Glaze, J. Organomet. Chem., 48, 1 (1973); 68, 1 (1974); R. West and P. C. Jones, J. Am. Chem. Soc., 91, 6156 (1969); G. A. Goinowicz and R. West, ibid.; 93, 1714, 1720 (1971); I. A. Shimp and R. J. Lagow, ibid., 95, 1343(1973); J. Klein and J. Y. Becker, J. Chem. Soc., Perkin Trans. 2, 599 (1973); J. Klein and A. Medlik-Balan, J. Chem. Soc., Chem. Commun., 877 (1975), and other papers in the same series.
(40) The figures were kindly provided by Professor W. L. Jorgensen; see W. L. Jorgensen and L. Salem, 'The Organic Chemists Book of Orbitals', Academic Press, New York, N.Y., 1973.

[^0]: ${ }^{a}$ See Table VII, footnote a. Parenthetical structural descriptions refer to orientations of substituents in the planar arrangements. ${ }^{b}$ Convergence on the density matrix was not achieved. ${ }^{\text {C W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, Prog. Phys. Org. Chem., }}$ 11, 175 (1974). ${ }^{d}$ W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am, Chem. Soc., 92, 4796 (1970). e J. D. Dill, P. v. R. Schleyer, and J. A. Pople, ibid., 97,3402 (1975). f J. D. Dill, J. A. Pople, and P. v. R. Schleyer, to be published. g W. A. Lathan, L. Radom, P. C. Hariharan, W. J. Hehre, and J. A. Pople, Top. Curr. Chem., 40, 1 (1973). hW. J. Hehre and J. A. Pople, J. Am. Chem. Soc., 94, 6901 (1972), ${ }^{i} 44-31 \mathrm{G}$ basis set not yet available for Na. ${ }^{j}$ Experimental geometry for cyclopentadiene ring (L. H. Sharpen and V. W. Laurie, J. Chem. Phys., 43, 2765 (1965)). ${ }^{k}$ Ring geometries from W. J. Hehre, J. Am. Chem. Soc., 94, 5919 (1972), for planar structure, cyclopropyl fragment rotated $90^{\circ} .{ }^{l} \mathrm{C}_{6} \mathrm{H}_{5}$ fragment from footnote k, cyclopropyl fragment from footnote g. ${ }^{m} \mathrm{H}$. Preuss and G. Diercksen, Int. J. Quantum Chem., 1,349 (1967). ${ }^{\text {D }}$ Dihedral angle, $\varphi(\mathrm{H}, \mathrm{B}, \mathrm{C}, \mathrm{C})=35^{\circ} .{ }^{\circ}$ Convergence achieved using direct descent technique (R. Seeger and J. A. Pople, J. Chem. Phys., in press).

